SEARCH

SEARCH BY CITATION

References

  • Barrios, A. E., Parabolic equation modeling in horizontally inhomogeneous environments, IEEE Trans. Antennas Propag., 40, 791797, 1992.
  • Barrios, A. E., A terrain parabolic equation model for propagation in the troposphere, IEEE Trans. Antennas Propag., 42, 9098, 1994.
  • Batchelor, G. K., The Theory of Homogeneous Turbulence, 197, Cambridge Univ. Press, New York, 1953.
  • Bean, B. R., E. J. Dutton, Radio Meteorology, 423, Dover, Mineola, N. Y., 1968.
  • Bhattacharyya, A., K. C. Yeh, Intensity correlation function for waves of different frequencies propagating through a random medium, Radio Sci., 23, 791808, 1988.
  • Corrsin, S., On the spectrum of isotropic temperature fluctuations in isotropic turbulence, J. Appl. Phys., 22, 469475, 1951.
  • Craig, K. H., M. F. Levy, Parabolic equation modelling of the effects of multipath and ducting on radar systems, IEE Proc., Part F, 1382, 153162, 1991.
  • Di, X., K. E. Gilbert, The effect of turbulence and terrain on outdoor sound propagation, Sixth International Symposium on Long-Range Sound Propagation, 315333Natl. Res. Council of Can., 1994.
  • Dockery, G. D., Modeling electromagnetic wave propagation in the troposphere using the parabolic equation, IEEE Trans. Antennas Propag., 36, 14641470, 1988.
  • Dockery, G. D., J. R. Kuttler, An improved impedance boundary algorithm for Fourier split-step solutions to the parabolic wave equation, IEEE Trans. Antennas Propag., 44, 15921599, 1996.
  • Flatté, S. M., R. Dashen, W. H. Munk, K. M. Watson, F. Zachariasen, Sound Transmission Through a Fluctuating Ocean, 299, Cambridge Univ. Press, New York, 1979.
  • Fung, J. C. H., J. C. R. Hunt, N. A. Malik, R. J. Perkins, Kinematic simulation of homogeneous turbulence by unsteady random Fourier modes, J. Fluid Mech., 236, 281318, 1992.
  • Gilbert, K. E., X. Di, A fast Green's function method for one-way sound propagation in the atmosphere, J. Accoust. Soc. Am., 94, 23432352, 1993.
  • Gilbert, K. E., X. Di, R. R. Korte, Distorted-wave Born approximation analysis of sound levels in a refractive shadow zone, Seventh International Symposium on Long Range Sound Propagation, 373389Ecole Cent. de Lyon, Ecully Cedex, France, 1996.
  • Hitney, H. V., A practical tropospheric scatter model using the parabolic equation, IEEE Trans. Antennas Propag., 41, 905909, 1993.
  • Kaimal, J. C., J. C. Wyngaard, Y. Izumi, O. R. Coté, Spectral characteristics of surface-layer turbulence, Q. J. R. Meteorol. Soc., 98, 563589, 1972.
  • Khanna, S., J. G. Brasseur, Three-dimensional buoyancy-and shear-induced local structure of the atmospheric boundary layer, J. Atmos. Sci., 55, 710743, 1998.
  • Khanna, S., J. C. Wyngaard, Local refractive index structure-function parameter and its application to wave propagation, Proceedings of the 1996 Battlespace Atmospherics ConferenceJ. H. Richter, K. D. Anderson, NRAD Tech. Doc. 2938Nav. Command Control and Ocean Surveillance Cent., San Diego, Calif., 1996.
  • Kolmogorov, A. N., The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, C. R. Seances Acad. Sci., 30, 301305, 1941.
  • Kolmogorov, A. N., A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number, J. Fluid Mech., 13, 8285, 1962.
  • Kuttler, J. R., G. D. Dockery, Theoretical description of the parabolic approximation/Fourier split-step method of representing electromagnetic propagation in the troposphere, Radio Sci., 26, 381393, 1991.
  • Lumley, J. L., H. A. Panofsky, The Structure of Atmospheric Turbulence, 239, Wiley Intersci., New York, 1964.
  • Macaskill, C., T. E. Ewart, Computer simulation of two-dimensional random wave propagation, IMA J. Appl. Math., 33, 115, 1984.
  • Mason, P. J., Large-eddy simulation of the convective boundary layer, J. Atmos. Sci., 46, 14921516, 1989.
  • Mason, P. J., S. H. Derbyshire, Large-eddy simulation of the stably stratified atmospheric boundary layer, Boundary Layer Meteorol., 53, 117162, 1990.
  • Mason, P. J., D. J. Thomson, Large-eddy simulation of the neutral-static-stability planetary boundary layer, Q. J. R. Meteorol. Soc., 113, 413443, 1987.
  • Moeng, C.-H., A large-eddy simulation model for the study of planetary boundary-layer turbulence, J. Atmos. Sci., 41, 20522062, 1984.
  • Moeng, C.-H., J. C. Wyngaard, Statistics of conservative scalars in the convective boundary layer, J. Atmos. Sci., 41, 31613169, 1984.
  • Moeng, C.-H., J. C. Wyngaard, Evaluation of turbulent transport and dissipation closures in second-order modeling, J. Atmos. Sci., 46, 23112330, 1989.
  • Monin, A. N., A. M. Yaglom, Statistical Fluid Mechanics, 2, MIT Press, Cambridge, Mass., 1971.
  • Obukhov, A. M., Structure of the temperature field in turbulent flows, Izv. Akad. Nauk SSR, 13, 5869, 1949.
  • Obukhov, A. M., Some specific features of atmospheric turbulence, J. Fluid Mech., 13, 7781, 1962.
  • Paulus, R. A., VOCAR: An experiment in the variability of coastal atmospheric refractivity, Proceedings of the International Geoscience and Remote Sensing Symposium, 386388Inst. of Electr. and Electron. Eng., New York, 1994.
  • Peltier, L. J., J. C. Wyngaard, Structure-function parameters in the convective boundary layer from large-eddy simulation, J. Atmos. Sci., 52, 36413659, 1995.
  • Peltier, L. J., J. C. Wyngaard, S. Khanna, J. G. Brasseur, Spectra in the unstable surface layer, J. Atmos. Sci., 53, 4961, 1996.
  • Rogers, L. T., Effects of the variability of atmospheric refractivity on propagation estimates, IEEE Trans. Antennas Propag., 44, 460465, 1996.
  • Rogers, L. T., Likelihood estimation of tropospheric duct parameters from horizontal propagation measurements, Radio Sci., 32, 7992, 1997.
  • Rogers, L. T., Demonstration of an efficient boundary layer parameterization for unbiased propagation estimation, Radio Sci., 33, 15991608, 1998.
  • Schmidt, H., U. Schumann, Coherent structure of the convective boundary layer derived from large-eddy simulations, J. Fluid Mech., 200, 511562, 1989.
  • Sullivan, P., C.-H. Moeng, B. Stevens, D. H. Lenschow, S. Mayor, Structure of the entrainment zone capping the convective atmospheric boundary layer, J. Atmos. Sci., 55, 30423064, 1998.
  • Tappert, F. D., The parabolic approximation method, inWave Propagation and Underwater Acoustics, edited byJ. B. Keller, andJ. S. Papadakis, chap. V, pp.224287,Springer-Verlag,New York,1977.
  • Tatarskii, V. I., Wave Propagation in a Turbulent Medium, translated from the RussianR. A. Silverman, 285, McGraw-Hill, New York, 1961.
  • Tennekes, H., J. L. Lumley, A First Course in Turbulence, 300, MIT Press, Cambridge, Mass., 1972.
  • Wesley, M. L., The combined effect of temperature and humidity fluctuations on refractive index, J. Appl. Meteorol., 15, 4349, 1976.
  • Wilson, D. K., J. G. Brasseur, K. E. Gilbert, Acoustic scattering and the spectrum of atmospheric turbulence, J. Acoust. Soc. Am., 105, 3549, 1999.
  • Wyngaard, J. C., C.-H. Moeng, Large eddy simulation in geophysical turbulence parameterization: An overview, Large Eddy Simulation of Complex Engineering and Geophysical FlowsB. Galperin, S. Orszag, 349366, Cambridge Univ. Press, New York, 1993.
  • Wyngaard, J. C., Y. Izumi, S. A. Collins Jr., Behavior of the refractive index structure parameter near the ground, J. Opt. Soc. Am., 61, 16461650, 1971.
  • Wyngaard, J. C., W. T. Pennell, D. H. Lenschow, M. A. LeMone, The temperature-humidity covariance budget in the convective boundary layer, J. Atmos. Sci., 35, 4758, 1978.