SEARCH

SEARCH BY CITATION

References

  • Barkeshli, S., R. G. Lautzenheiser, An iterative method for inverse scattering problems based on an exact gradient search, Radio Sci., 294, 11191130, 1994.
  • Colton, D., R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag, New York, 1992.
  • Franchois, A., C. Pichot, Microwave imaging- Complex permittivity reconstruction with a Levenberg- Marquardt method, IEEE Trans. Antennas Propag., 452, 203215, 1997.
  • Garnero, L., A. Franchois, J.-P. Hugonin, C. Pichot, N. Joachimowicz, Microwave imaging — complex permittivity reconstruction by simulated annealing, IEEE Trans. Microwave Theory Tech., 3911, 18011807, 1991.
  • Givoli, D., Numerical Methods for Problems in Infinite Domains, Elsevier, New York, 1992.
  • Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, Mass., 1989.
  • Gustafsson, M., Inverse electromagnetic scattering problems —a time-domain optimization approach, Licentiate thesis,Dep. of Electromagn. Theory, Lund Inst. of Technol.,Lund, Sweden,1997.
  • Gustafsson, B., H.-O. Kreiss, J. Oliger, Time Dependent Problems and Difference Methods, John Wiley, New York, 1995.
  • Habashy, T. M., R. J. Mittra, On some inverse methods in electromaguetics, J. Electromagn. Waves Appl., 11, 2558, 1987.
  • He, S., S. I. Kabanikhin, An optimization approach to a three-dimensional acoustic inverse problem in the time domain, J. Math. Phys., 368, 40284043, 1995.
  • He, S., S. Strom, V. H. Weston, Time Domain Wave-Splittings and Inverse Problems, Oxford Univ. Press, New York, 1998.
  • He, S., V. H. Weston, Wave-splitting and absorbing boundary condition for Maxwell's equations on a curved surface, Math. Computers Simulation, 1999.
  • Kak, A. C., M. Slaney, Principles of Computerized Tomographic Imaging, IEEE Press, Piscaway, N. J., 1988.
  • Kantorovich, L. V., G. P. Akilov, Functional Analysis in Normed SpacesD. E. Brown, A. P. Robertson, Pergamon, Tarrytown, N. Y., 1964.
  • Kleinman, R. E., P. M. vanden Berg, An extended range-modified gradient technique for profile inversion, Radio Sci., 285, 877884, 1993.
  • Kreiss, H.-O., J. Lorentz, Initial-Boundary Value Problems and the Navier-Stokes Equations, Academic, San Diego, Calif., 1989.
  • Kunz, K. S., R. J. Luebbers, The Finite Difference Time Domain Method for Electrodynamics, CRC Press, Boca Raton, Fl., 1993.
  • Lu, S. Y., J. G. Berryman, Inverse scattering, seismic travel time tomography and neural networks, Int. J. of Imaging Syst. Technol., 2, 112118, 1990.
  • Mur, G., Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations, IEEE Trans. Electromagn. Compat., 23, 377382, 1981.
  • Polack, E., Computational Methods in Optimization: A Unified Approach, Academic, San Diego, Calif., 1971.
  • Qing, A., L. Jen, A novel method for microwave imaging of dielectric cylinder in layered media, J. Electromagn. Waves Appl., 11, 13371348, 1997.
  • Romanov, V. G., S. I. Kabanikhin, Inverse Problems of Geoelectrics, VNU Sci., Utrecht, Netherlands, 1994.
  • Strikwerda, J. C., Finite Difference Schemes and Partial Differential Equations, Chapman and Hall, New York, 1989.
  • Takenaka, T., H. Harada, M. Tanaka, Reconstruction algorithm of the reflective index of a cylindrical object from the intensity measurements of the total field, Microwave Opt. Tech. Lett., 143, 182188, 1997.
  • Tarantola, A., Inverse Problem Theory : Methods for Data Fitting and Model Parameter Estimation, Elsevier, New York, 1987.
  • Tijhuis, A. G., Electromagnetic Inverse ProfilingChap. 6, VNU Sci., Utrecht, Netherlands, 1987.
  • Wahba, G., Practical approximate solutions to linear operator equations when the data are noisy, SIAM J. Numet. Anal., 14, 651667, 1977.
  • Wang, A. G., W. C. Chew, Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method, IEEE Trans. Med. Imaging, MI-9, 218225, 1990.
  • Wang, T., M. Oristaglio, A. Tripp, G. Hohmann, Inversion of diffusive transient electromagnetic data by a conjugate-gradient method, Radio Sci., 294, 11431156, 1994.
  • Yee, K. S., Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Trans. Antennas Propag., 143, 302307, 1966.