SEARCH

SEARCH BY CITATION

References

  • Adler, R. F., A. J. Negri, A satellite infrared technique to estimate tropical convective and stratiform rainfall, J. Clim. Appl. Meteorol., 27, 3051, 1988.
  • Arkin, P. A., The relationship between fractional coverage of high cloud and rainfall accumulations during GATE over the B-scale array, Mon. Weather Rev., 107, 13821387, 1979.
  • Arkin, P. A., P. Xie, The global precipitation climatology project: First algorithm intercomparison project, Bull. Am. Meteorol. Soc., 75, 401419, 1994.
  • Bischoff, H., W. Schneider, A. J. Pinz, Multispectral classification of Landsat images using neural networks, IEEE Trans. Geosci. Remote Sens., 303, 482490, 1992.
  • Cabrera-Mercader, C. R., D. H. Staelin, Passive microwave relative humidity retrievals using feedforward neural networks, IEEE Trans. Geosci. Remote Sens., 336, 13241328, 1995.
  • Davis, D. T., Z. Chen, L. Tsang, J. N. Hwang, A. T. C. Chen, Retrieval of snow parameters by iterative inversion of a neural network, IEEE Trans. Geosci. Remote Sens., 314, 842852, 1993.
  • Funahashi, K. I., On the approximation realization of continuous mappings by neural networks, Neural Networks, 2, 183192, 1989.
  • Gori, M., A. Tesi, On the problem of local minimum in back-propagation, IEEE Trans. Pattern Anal Mach. Intel., 14, 7686, 1992.
  • Grassotti, C., L. Grand, Classification-based rainfall estimation using satellite data and numerical forecast model fields, J. Appl. Meteorol., 33, 159178, 1994.
  • Griffith, G. C., W. L. Woodley, P. G. Grube, D. W. Martin, J. Stout, D. N. Sikdar, Rain estimation from geosynchronous satellite imagery-visible and infrared studies, Mon. Weather Rev., 106, 11531171, 1978.
  • Grossberg, S., Emvedding field: A theory of learning with physiological implications, J. Math. Psychol., 6, 209239, 1969.
  • Gupta, H. V., K. Hsu, S. Sorooshian, Superior training of artificial neural networks using weight-space partitioning1997 IEEE International Conference on Neural NetworksInst. of Electr. and Electron. Eng.Houston, Tex., 1997.
  • Hecht-Nielsen, R., Counterpropagation networks, Proceedings of the International Conference on Neural Networks, II 1932, IEEE Press, Piscataway, N.J., 1987.
  • Hecht-Nielsen, R., Applications of counterpropagation networks, Neural Networks, 1, 131139, 1988.
  • Hecht-Nielsen, R., Neurocomputing, Addison-Wesley, Reading, Mass., 1990.
  • Heermann, P. D., N. Khazenie, Classification of multispectral remote sensing data using a back-propagation neural network, IEEE Trans. Geosci. Remote Sens., 301, 8188, 1992.
  • Hornik, K., M. Stinchcombe, H. White, Universal approximation of an unknown mapping and its derivatives using multi-layer feed-forward networks, Neural Networks, 3, 551560, 1990.
  • Hsu, K., H. V. Gupta, S. Sorooshian, Artificial neural network modeling of the rainfall-runoff process, Water Resour. Res., 31, 25172530, 1995.
  • Hsu, K., X. Gao, S. Sorooshian, H. V. Gupta, Precipitation estimation from remotely sensed information using artificial neural networks, J. Appl. Meteorol., 36, 11761190, 1997.
  • Jacobs, R. A., Increased rates of convergence through learning rate adaptation, Neural Networks, 1, 295307, 1988.
  • King, P. W. S., W. D. Hogg, P. A. Arkin, The role of visible data in improving satellite rain-rate estimates, J. Appl. Meteorol., 34, 16081621, 1995.
  • Kohonen, T., Self-organized formation of topologically correct feature maps, Biol. Cybern., 43, 5969, 1982.
  • Kosko, B., Neural Networks for Signal Processing, Prentice-Hall, Englewood Cliffs, N.J., 1992.
  • Li, L., J. Vivekanandan, C. H. Chen, L. Tsang, Microwave radiometric technique to retrieve vapor, liquid and ice, I, Development of a neural network-based inversion method, IEEE Trans. Geosci. Remote Sens., 352, 224236, 1997.
  • Negri, A. J., R. F. Adler, Infrared and visible satellite rain estimation, I, A grid cell approach, J. Clim. Appl. Meteorol., 26, 15531564, 1987a.
  • Negri, A. J., R. F. Adler, Infrared visible satellite rain estimation, II, A cloud definition approach, J. Clim. Appl. Meteorol., 26, 15651576, 1987b.
  • Negri, A. J., R. F. Adler, An intercomparison of three satellite infrared rainfall techniques over Japan and surrounding waters, J. Appl. Meteorol., 32, 357373, 1993.
  • Negri, A. J., R. F. Adler, P. J. Wetzel, Rainfall estimation from satellites: An examination of Griffith-Woodley technique, J. Clim. Appl. Meteorol., 23, 102116, 1984.
  • Serpico, S. B., F. Roli, Classification of multisensor remote-sensing images by structured neural networks, IEEE Trans. Geosci. Remote Sens., 333, 562578, 1995.
  • Suykens, J. A. K., J. Vandewalle, B. De Moor, Artificial Neural Networks for Modeling and Control of Non-linear Systems, Kluwer Acad., Norwell, Mass., 1996.
  • Tsang, L., Z. Chen, S. Oh, R. J. Marks II, A. T. C. Chang, Inversion of snow parameters from passive microwave remote sensing measurements by neural network trained with a multiple scattering model, IEEE Trans. Geosci. Remote Sens., 305, 10151023, 1992.
  • Tsonis, A. A., G. A. Isaac, On a new approach for instantaneous rain area delineation in the midlatitudes using GOES data, J. Clim. Appl. Meteorol., 24, 12081218, 1985.
  • , Artificial Neural Networks: Forecasting Time SeriesV. R. Vemuri, R. D. Rogers, IEEE Comput. Soc. Press, Los Alamitos, Calif., 1994.
  • Xiao, R., V. Chandrasekar, Development of a neural network based algorithm for rainfall estimation from radar observations, IEEE Trans. Geosci. Remote Sens., 351, 160171, 1997.
  • Yhann, S. R., J. J. Simpson, Application of neural networks to AVHRR cloud segmentation, IEEE Trans. Geosci. Remote Sens., 333, 590604, 1995.
  • Yoshida, T., S. Omatu, Neural network approach to land cover mapping, IEEE Trans. Geosci. Remote Sens., 325, 11031109, 1994.