SEARCH

SEARCH BY CITATION

References

  • Abram, J. W., and D. B. Nedwell, Inhibition of methanogenesis by sulphate reducing bacteria competing for transferred hydrogen, Arch. Mirobiol., 117, 8992, 1978.
  • Arah, J. R. M., and K. D. Stephen, A model of the processes leading to methane emission from peatland, Atmos. Environ., 32(19), 32573268, 1998.
  • Aselmann, I., and P. J. Crutzen, Distribution of natural fresh-water wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions, J. Atmos. Chem., 8(4), 307358, 1989.
  • Avery, G. B., R. D. Shannon, J. R. White, C. S. Martens, and M. J. Alperin, Effect of seasonal changes in the pathways of methanogenesis on the δ13C values of pore water methane in a Michigan peatland, Global Biogeochemical Cycles, 13, 475484, 1999.
  • Bartlett, K. B., D. S. Bartlett, R. C. Harriss, and D. I. Sebacher, Methane emission along a salt marsh salinity gradient, Biogeochemistry, 4, 183202, 1987.
  • Bhatti, K. B., D. G. Streets, and W. K. Foell, Acid rain in Asia, Environ. Manage., 16, 541562, 1992.
  • Brown, K. A., and J. F. MacQueen, Sulphate uptake from surface water by peat, Soil Biol. Biochem., 17(4), 411420, 1985.
  • Conrad, R., F. S. Lupton, and J. G. Zeikus, Hydrogen metabolism and sulfate-dependent inhibition of methanogenesis in a eutrophic lake sediment (Lake Mendota), FEMS Microbial Ecol., 45, 107115, 1987.
  • Daulat, W. E., and R. S. Clymo, Effects of temperature and water table on the efflux of methane from peatland surface cores, Atmos. Environ., 32(19), 32073218, 1998.
  • Dernier van der Gon, H. A. C., and H. U. Neue, Impact of gypsum application on the methane emission from a wetland rice field, Global Biogeochem. Cycles, 8, 127134, 1994.
  • Dise, N. B., Methane emission from Minnesota peatlands: Spatial and seasonal variability, Global Biogeochem. Cycles, 7, 123142, 1993.
  • Dise, N. B., and E. S. Verry, Suppression of peatland methane emission by cumulative sulfate deposition in simulated acid rain, Biogeochemistry, 53, 143160, 2001.
  • Dlugokencky, E. J., K. A. Masarie, and P. M. Lang, Trans PP continuing decline in the growth rate of the atmospheric methane burden, Nature, 393, 447450, 1998.
  • Dlugokencky, E. J., B. P. Walter, K. A. Masarie, P. M. Lang, and E. S. Kasischke, Measurements of an anomalous global methane increase during 1998, Geophys. Res. Lett., 28, 499502, 2001.
  • Fowler, D., J. MacDonald, I. D. Leith, K. J. Hargreaves, and R. Martynoga, The response of peat wetland methane emissions to temperature, water table and sulphate deposition, in Acid Rain Research: Do We Have Enough Answers?, edited by Heij, G. J., and J. W. Erisman, pp. 485487, Elsevier Sci., New York, 1995.
  • Freeman, C., J. Hudson, M. A. Lock, B. Reynolds, and C. Swanson, A possible role of sulphate in the suppression of wetland methane fluxes following drought, Soil Biol. Biochem., 26, 14391442, 1994.
  • Freney, J. R., V. A. Jacq, and J. F. Balensperger, The significance of the biological sulfur cycle in rice production, in Microbiology of Tropical Soils and Plant Productivity, edited by Dommergues, Y. R., and H. G. Diem, Dr. W. Junk, Norwell, Mass., 1982.
  • Intergovernmental Panel on Climate Change (IPCC), Climate Change 1995: The Science of Climate Change, Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, New York, 1996.
  • Kelley, C. A., N. B. Dise, and C. S. Martens, Temporal variations in the stable carbon isotope composition of methane emitted from Minnesota peatlands, Global Biogeochem. Cycles, 6, 263269, 1992.
  • Kristjansson, J. K., P. Schonheit, and R. K. Thauer, Different Ks values for hydrogen of methanogenic bacteria and sulfate reducing bacteria, Arch. Microbiol., 131, 278282, 1982.
  • Krylova, N. I., P. H. Janssen, and R. Conrad, Turnover of propionate in methanogenic paddy soil, FEMS Microbiol. Ecol., 23, 107117, 1997.
  • Kusel, K., et al., Acetogenic and sulfate-reducing bacteria inhabiting the rhizoplane and deep cortex cells of the sea grass Halodule wrightii, Appl. Environ. Microbiol., 65, 51175123, 1999.
  • Lelieveld, J., P. Crutzen, and F. J. Dentener, Changing concentration, lifetime and climate forcing of atmospheric methane, Tellus, Ser. B, 5, 128150, 1998.
  • Lindau, C. W., D. P. Alford, P. K. Bollich, and S. D. Linscombe, Inhibition of methane evolution by calcium sulfate addition to flooded rice, Plant Soil, 158, 299301, 1994.
  • Lindau, C. W., et al., Methane and nitrous oxide evolution and N-15 and Ra-226 uptake as affected by application of gypsum and phosphogypsum to Louisiana rice, Agric. Ecosyst. Environ., 68, 165173, 1998.
  • Lovely, D. R., and M. A. Klug, Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations, Appl. Environ. Microbiol., 45, 187192, 1983.
  • Martens, C. S., and R. A. Berner, Interstitial water chemistry of anoxic Long Island Sound sediments, 1, Dissolved gases, Limnol. Oceanogr., 22(1), 1025, 1977.
  • Matthews, E., and I. Fung, CH4 emissions from natural wetlands: Global distribution, area and environmental characteristics of sources, Global Biogeochem. Cycles, 1, 6186, 1987.
  • Matthews, E., I. Fung, and J. Lerner, Methane emissions from rice cultivation: Geographic and seasonal distribution of cultivated areas and emissions, Global Biogeochem. Cycles, 5, 324, 1991.
  • Mattson, M. D., and G. E. Likens, Air pressure and methane fluxes, Nature, 347, 718719, 1990.
  • Meteorological Office, Monthly weather report, Her Majesty's Stationery Off., Colegate, England, 1987.
  • Nedwell, D. B., and A. Watson, CH4 production, oxidation and emission in a UK ombrotrophic peat bog: Influence of SO42− from acid rain, Soil Biol. Biochem., 27, 893903, 1995.
  • Raskin, L., B. E. Rittmann, and D. A. Stahl, Competition and coexistence of sulfate-reducing and methanogenic populations in anaerobic biofilms, Appl. Environ. Microbiol., 62, 38473857, 1996.
  • Rejmankova, E., and R. A. Post, Methane in sulfate-rich and sulfate-poor wetland sediments, Biogeochemistry, 34, 5770, 1996.
  • Rodhe, H., Human impact on the atmospheric sulfur balance, Tellus Ser. A-B, 110122, 1999.
  • Rodhe, H., J. Langner, L. Gallardo, and E. Kjellstrom, Global scale transport of acidifying pollutants, Water Air Soil Pollut., 85, 3750, 1995.
  • Romanowicz, E. A., D. I. Siegel, J. P. Chanton, and P. H. Glaser, Temporal variations in dissolved methane deep in the Lake Agassiz peatlands, Global Biogeochem. Cycles, 9, 197212, 1995.
  • Rooney-Varga, J. N., R. Devereux, R. S. Evans, and M. E. Hines, Seasonal changes in the relative abundance of uncultivated sulfate reducing bacteria in a salt marsh sediment and rhizosphere of Spartina alterniflora, Appl. Environ. Microbiol., 63, 38953901, 1997.
  • Saarnio, S., J. Alm, J. Silvola, A. Lohila, H. Nykanen, and P. J. Martikainen, Seasonal variation in CH4 emissions and production and oxidation potentials at microsites on an oligotrophic pine fen, Oecologia, 110(3), 414422, 1997.
  • Schimel, J. P., Plant-transport and methane production as controls on methane flux from arctic wet meadow tundra, Biogeochemistry, 28, 183200, 1995.
  • Schink, B., Energetics of syntrophic cooperation in methanogenic degradation, Microbiol. Mol. Biol. Rev., 61, 262, 1997.
  • Schonheit, P., J. K. Kristjansson, and R. K. Thauer, Kinetic mechanism for the ability of sulfate reducers to out-compete methanogens for acetate, Arch. Microbiol., 132, 285288, 1982.
  • Segers, R., Wetland methane fluxes: Upscaling from kinetics via a single root and soil layer to the plot, Ph.D. thesis, Wageningen Univ., Wageningen, Netherlands, 1999.
  • Shannon, R. D., and J. R. White, 3-year study of controls on methane emissions from 2 Michigan peatlands, Biogeochemistry, 27, 3560, 1994.
  • Valentine, D. L., and W. S. Reeburgh, New perspectives on anaerobic methane oxidation, Environ. Microbiol., 2, 477484, 2000.
  • van Bodegom, P. M., and A. J. M. Stams, Effects of alternate electron acceptors and temperature on methanogenesis in rice soils, Chemosphere, 39, 167182, 1999.
  • Van Breemen, N., and T. C. J. Feitjel, Soil processes and properties involved in the production of greenhouse gases, with special relevance to soil taxonomic systems, in Soils and the Greenhouse Effect, edited by Inowmen, A. F., pp. 195223, John Wiley, New York, 1990.
  • Watson, A., and D. B. Nedwell, Methane production and emission from peat: The influence of anions (sulphate, nitrate) from acid rain, Atmos. Environ., 32, 32393245, 1998.
  • Williams, B., D. Silcock, and M. Young, Seasonal dynamics of N in two sphagnum moss species and the underlying peat treated with 15NH415NO3, Biogeochemistry, 45, 285302, 1999.
  • Wind, T., S. Stubner, and R. Conrad, Sulfate-reducing bacteria in rice field soil and on rice roots, Syst. Appl. Microbiol., 22, 269279, 1999.
  • Wolin, M. J., Hydrogen transfer in microbial communities, in Microbial Interactions and Communities, vol. 1, edited by Bull, A. T., and J. H. Slater, pp. 323356, Academic, San Diego, Calif., 1982.