SEARCH

SEARCH BY CITATION

References

  • Arneth, A., F. M. Kelliher, T. M. McSeveny, and J. N. Byers, Assessment of annual carbon exchange in a water-stressed Pinus radiata plantation: An analysis based on eddy covariance measurements and an integrated biophysical model, Global Change Biol., 5(5), 531545, 1999.
  • Barber, V. A., G. P. Juday, and B. P. Finney, Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress, Nature, 405, 668672, 2000.
  • Beerling, D. J., Carbon isotope discrimination and stomatal responses of mature Pinus sylvestris L trees exposed in situ for three years to elevated CO2 and temperature, Acta Oecol., 18(6), 697712, 1997.
  • Beerling, D. J., J. Heath, F. I. Woodward, and T. A. Mansfield, Drought-CO2 interactions in trees—Observations and mechanisms, New Phytol., 134(2), 235242, 1996.
  • Berninger, F., and P. Hari, Optimal regulation of gas exchange: Evidence from field data, Ann. Bot., 71, 135140, 1993.
  • Berninger, F., E. Sonninen, T. Aalto, and J. Lloyd, Modeling 13C discrimination in trees, Global Biogeochem. Cycles, 14, 213223, 2000.
  • Bert, D., S. W. Leavitt, and J. L. Dupouey, Variations of wood Delta-C-13 and water-use efficiency of Abies Alba during the last century, Ecology, 78(5), 15881596, 1997.
  • Bowes, G., Facing the inevitable: Plants and increasing atmospheric CO2, Annu. Rev. Plant Physiol. Plant Mol. Biol., 44, 309332, 1993.
  • Bristow, K. L., and G. S. Cambell, On the relationship between incoming solar radiation and daily maximum and minimum temperature, Agric. For. Meteorol., 31, 159166, 1984.
  • Campbell, G. S., Fundamentals of radiation and temperature relations, in Physiological Plant Ecology, I, Responses to the Physical Environment, edited by O. L. Lange et al., pp. 1140, Springer-Verlag, New York, 1981.
  • Chatfield, C., The Analysis of Time Series, Chapman and Hall, London, 1989.
  • Cowan, I. R., Stomatal behaviour and environment, Adv. Bot. Res., 4, 117128, 1977.
  • Cowan, I. R., Regulation of water use in relation to carbon gain in higher plants, in Physiological Plant Ecology, II, Water Relations and Carbon Assimilation, edited by O. L. Lange et al., pp. 589613, Springer-Verlag, New York, 1982.
  • Drake, B. G., M. A. Gonzalezmeler, and S. P. Long, More efficient plants—A consequence of rising atmospheric CO2, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48, 609639, 1997.
  • Duquesnay, A., N. Breda, M. Stievenard, and J. L. Dupouey, Changes of tree-ring δ13C and water-use efficiency of beech (Fagus sylvatica L.) in north-eastern France during the past century, Plant Cell Environ., 21, 565572, 1998.
  • Ephrat, J., J. Goudriaan, and A. Marani, Modelling diurnal patterns of air temperature, radiation, wind speed and relative humidity by equations from daily characteristics, Agric. Syst., 51(4), 377393, 1996.
  • Farquhar, G. D., and T. D. Sharkey, Stomatal conductance and photosynthesis, Annu. Rev. Plant Physiol., 33, 317345, 1982.
  • Farquhar, G. D., S. von Caemmerer, and J. A. Berry, A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species, Planta, 149, 7890, 1980.
  • Farquhar, G. D., H. K. T., A. G. Condon, and R. A. Richards, Carbon isotope fractionation and plant water-use efficiency, in Stable Isotopes in Ecological Research, edited by P. W. Rundel, J. R. Ehleringer, and K. A. Nagy, pp. 2140, Springer-Verlag, New York, 1988.
  • Farquhar, G. D., J. R. Ehleringer, and K. T. Hubick, Carbon isotope discrimination and photosynthesis, Annu. Rev. Plant Physiol. Plant Mol. Biol., 40, 503537, 1989a.
  • Farquhar, G. D., S. C. Wong, J. R. Evans, and K. T. Hubick, Photosynthesis and gas exchange, in Plants Under Stress: Biochemistry, Physiology, and Ecology and Their Application to Plant Improvement, edited by H. G. Jones, T. J. Flowers, and M. B. Jones, pp. 4769, Cambridge Univ. Press, New York, 1989b.
  • Feng, X., Trends in intrinsic water-use efficiency of natural trees for the past 100–200 years: A response to atmospheric CO2 concentration, Geochim. Cosmochim. Acta, 63, 18911903, 1999.
  • Feng, X. H., Long-term ci/ca response of trees in western North America to atmospheric CO2 concentration derived from carbon isotope chronologies, Oecologia, 117(1–2), 1925, 1998.
  • Francey, R. J., Tasmanian tree rings belie suggested anthropogenic 13C/12C trends, Nature, 290, 232234, 1981.
  • Francey, R. J., and G. D. Farquhar, An explanation of 13C/12C variations in tree rings, Nature, 297, 2831, 1982.
  • Francey, R. J., C. E. Allison, D. M. Etheridge, C. M. Trudinger, I. G. Enting, M. Leuenberger, R. L. Langenfelds, E. Michel, and L. P. Steele, A 1000-year high precision record of delta C-13 in atmospheric CO2, Tellus, Ser. B, 51, 170193, 1999.
  • Freyer, H. D., On the 13C record in tree rings, part I, 13C variations in Northern Hemispheric trees during the last 150 years, Tellus, 31, 124137, 1979.
  • Freyer, H. D., and N. Belacy, 13C/12C records in Northern Hemispheric trees during the past 500 years: Anthropogenic impact and climatic superpositions, J. Geophys. Res., 88(C11), 68446852, 1983.
  • Hall, A. E., and E.-D. Schulze, Stomatal response to environment and a possible interrelation between stomatal effects on transpiration and CO2 assimilation, Plant Cell Environ., 3, 467474, 1980.
  • Harley, P. C., J. D. Tenhunen, and O. L. Lange, Use of an analytical model to study limitations on net photosynthesis in Arbutus unedo under field conditions, Oecologia, 70, 393401, 1986.
  • Harley, P. C., R. B. Thomas, J. F. Reynolds, and B. R. Strain, Modeling photosynthesis of cotton grown in elevated CO2, Plant Cell Environ., 15, 271282, 1992.
  • Hemming, D. L., V. R. Switsur, J. S. Waterhouse, and T. H. E. Heaton, Climate variation and the stable carbon isotope composition of tree ring cellulose: An intercomparison of Quercus robur, Fagus sylvatica and Pinus silvestris, Tellus, Ser. B, 50, 2533, 1998.
  • Hollinger, D. Y., et al., Forest-atmosphere carbon dioxide exchange in eastern Siberia, Agric. For. Meteorol., 90, 291306, 1998.
  • Idso, K. E., and S. B. Idso, Plant responses to atmospheric CO2 enrichment in the face of environmental constraints: A review of the past 10 years' research, Agric. For. Meteorol., 69, 153203, 1994.
  • Kalaschnikov, Y. N., Atlas Krasnoyarskogo kraya i respubliki Chakasii, Roskartografia, Novosibirsk, Russia, 1994.
  • Kelliher, F. M., et al., Evaporation from a central Siberian pine forest, J. Hydrol., 205(3–4), 279296, 1998.
  • Korol, R. L., M. U. F. Kirschbaum, G. D. Farquhar, and M. Jeffreys, Effects of water status and soil fertility on the C-isotope signature in Pinus radiata, Tree Physiol., 19(9), 551562, 1999.
  • Krishnamurty, R. V., Implications of a 400 year tree ring based 13C/12C chronology, Geophys. Res. Lett., 23(4), 371374, 1996.
  • Lanzante, J. R., Resistant, robust and non-parametric techniques for the analysis of climate data: Theory and examples, including applications to historical radiosonde station data, Int. J. Climatol., 16, 11971226, 1996.
  • Leavitt, S. W., Isotopes and trace elements in tree rings, in International Dendrochronological Symposium, edited by T. S. Bartholin et al., pp. 182190, Lund University, Lund, Sweden, 1992.
  • Leavitt, S. W., Environmental information from 13C/12C ratios of wood, in Climate Change in Continental Isotopic Records, Geophys. Monogr. Ser., vol. 78, edited by P. K. Swart et al., pp. 325331, AGU, Washington, D. C., 1993.
  • Leavitt, S. W., and A. Lara, South American tree rings show declining δ13C trend, Tellus, Ser. B, 46, 152157, 1994.
  • Leavitt, S. W., and A. Long, An atmospheric 13C/12C reconstruction generated through removal of climate effects from tree-ring 13C/12C measurements, Tellus, Ser. B, 35, 92102, 1983.
  • Lee, H. S. J., and P. G. Jarvis, Trees differ from crops and from each other in their responses to increases in CO2 concentration, J. Biogeogr., 22(2–3), 323330, 1995.
  • Leuning, R., Modelling stomatal behaviour and photosynthesis of Eucalyptus grandis, Aust. J. Plant Physiol., 17, 159175, 1990.
  • Lipp, J., P. Trimborn, P. Fritz, H. Moser, B. Becker, and B. Frenzel, Stable isotopes in tree ring cellulose and climatic change, Tellus, Ser. B, 43, 322330, 1991.
  • Livingston, N. J., and D. L. Spittlehouse, Carbon isotope fractionation in tree rings in early and late wood in relation to intra-growing season water balance, Plant Cell Environ., 19, 768774, 1996.
  • Lloyd, J., Modelling stomatal responses to environment in Macadamia integrifolia, Aust. J. Plant Physiol., 18, 649660, 1991.
  • Lloyd, J., The CO2 dependence of photosynthesis, plant growth responses to elevated CO2 concentrations and their interaction with soil nutrient status, II, Temperate and boreal forest productivity and the combined effects of increasing CO2 concentrations and increased nitrogen deposition at a global scale, Funct. Ecol., 13, 439459, 1999.
  • Lloyd, J., and G. D. Farquhar, 13C discrimination during CO2 assimilation by the terrestrial biosphere, Oecologia, 99, 201215, 1994.
  • Lloyd, J., and G. D. Farquhar, The CO2 dependence of photosynthesis, plant growth responses to elevated atmospheric CO2 concentrations and their interaction with soil nutrient status, 1, General principles and forest ecosystems, Funct. Ecol., 10(1), 432, 1996.
  • Lloyd, J., J. Grace, A. C. Miranda, P. Meir, S. C. Wong, B. S. Miranda, I. R. Wright, J. H. C. Gash, and J. McIntyre, A simple calibrated model of Amazon rainforest productivity based on leaf biochemical properties, Plant Cell Environ., 18, 11291145, 1995.
  • Loader, N. J., I. Robertson, A. C. Barker, V. R. Switsur, and J. S. Waterhouse, An improved technique for the batch processing of small wholewood samples to α-cellulose, Chem. Geol., 136, 313317, 1997.
  • Long, S. P., C. P. Osborne, and S. W. Humphries, Photosynthesis, rising atmospheric carbon dioxide concentration and climate change, in Global Change: Effects on Coniferous Forests and Grasslands, edited by A. I. Breymeyer et al., pp. 121181, John Wiley, New York, 1996.
  • Mäkelä, A., F. Berninger, and P. Hari, Optimal control of gas exchange during drought: Theoretical analysis, Ann. Bot., 77, 461467, 1996.
  • Marshall, J. D., and R. A. Monserud, Homeostatic gas-exchange parameters inferred from 13C/12C in tree rings of conifers, Oecologia, 105, 1321, 1996.
  • Schweingruber, F. H., Tree Rings: Basics and Applications of Dendrochronology, Kluwer Acad., Norwell, Mass., 1989.
  • Siegel, S., and N. Castellan, Nonparametric Statistics for the Behavioral Sciences, McGraw-Hill, New York, 1988.
  • Spitters, C. J. J., H. A. J. H. M. Toussaint, and J. Goudriaan, Separating the diffuse and direct component of global radiation and its implications for modelling canopy photosynthesis, part I, Components of incoming radiation, Agric. For. Meteorol., 38, 217229, 1986.
  • Stuiver, M., and T. F. Braziunas, Tree cellulose 13C/12C isotope ratios and climatic change, Nature, 328, 5860, 1987.
  • Switsur, R., and J. Waterhouse, Stable isotopes in tree ring cellulose, in Stable Isotopes, edited by H. Griffiths, D. Robinson, and P. van Gardingen, pp. 303321, BIOS Sci. Publishers, Oxford, England, 1998.
  • Syvertsen, J. P., J. Lloyd, C. McConchie, P. E. Kriedemann, and G. D. Farquhar, On the relationship between leaf anatomy and CO2 diffusion through the mesophyll of hypostomatous leaves, Plant Cell Environ., 18, 149157, 1995.
  • von Caemmerer, S., J. R. Evans, G. S. Hudson, and T. J. Andrews, The kinetics of ribulose-1,5-bisphosphate carboxylase/oxygenase in vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco, Planta, 195, 8897, 1994.
  • Walcroft, A. S., W. B. Silvester, D. Whitehead, and F. M. Kelliher, Seasonal changes in stable carbon isotope ratios within annual rings of Pinus radiata reflect environmental regulation of growth processes, Aust. J. Plant Physiol., 24, 5768, 1997.
  • Wang, K. Y., Canopy CO2 exchange of Scots Pine and its seasonal variation after four-year exposure to elevated CO2 and temperature, Agric. For. Meteorol., 82, 127, 1996.
  • Wang, K. Y., and S. Kellomaki, Stomatal conductance and transpiration in shoots of Scots pine after 4-year exposure to elevated CO2 and temperature, Can. J. Bot., 75(4), 552561, 1997.
  • Werner, R. A., B. A. Bruch, and W. A. Brand, ConFlo III—An interface for high precision δ13C and δ15N analysis with an extended dynamic range, Rapid Commun. Mass Spectrom., 13, 12371241, 1999.
  • Whitehead, D., and F. M. Kelliher, A canopy water balance model for a Pinus radiata stand before and after thinning, Agric. For. Meteorol., 55, 109126, 1991.
  • Wilson, A. T., and M. J. Grinsted, 12C/13C in cellulose and lignin as palaeothermometers, Nature, 265, 133135, 1977.
  • Wirth, C., et al., Above-ground biomass and structure of pristine Siberian Scots pine forests as controlled by competition and fire, Oecologia, 121, 6680, 1999.