Global Biogeochemical Cycles

Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) Emission Scenarios

Authors

  • Fortunat Joos,

  • I. Colin Prentice,

  • Stephen Sitch,

  • Robert Meyer,

  • Georg Hooss,

  • Gian-Kasper Plattner,

  • Stefan Gerber,

  • Klaus Hasselmann


Abstract

A coupled physical-biogeochemical climate model that includes a dynamic global vegetation model and a representation of a coupled atmosphere-ocean general circulation model is driven by the nonintervention emission scenarios recently developed by the Intergovernmental Panel on Climate Change (IPCC). Atmospheric CO2, carbon sinks, radiative forcing by greenhouse gases (GHGs) and aerosols, changes in the fields of surface-air temperature, precipitation, cloud cover, ocean thermal expansion, and vegetation structure are projected. Up to 2100, atmospheric CO2 increases to 540 ppm for the lowest and to 960 ppm for the highest emission scenario analyzed. Sensitivity analyses suggest an uncertainty in these projections of −10 to +30% for a given emission scenario. Radiative forcing is estimated to increase between 3 and 8 W m−2 between now and 2100. Simulated warmer conditions in North America and Eurasia affect ecosystem structure: boreal trees expand poleward in high latitudes and are partly replaced by temperate trees and grasses at lower latitudes. The consequences for terrestrial carbon storage depend on the assumed sensitivity of climate to radiative forcing, the sensitivity of soil respiration to temperature, and the rate of increase in radiative forcing by both CO2 and other GHGs. In the most extreme cases, the terrestrial biosphere becomes a source of carbon during the second half of the century. High GHG emissions and high contributions of non-CO2 agents to radiative forcing favor a transient terrestrial carbon source by enhancing warming and the associated release of soil carbon.

Ancillary