SEARCH

SEARCH BY CITATION

References

  • Battle, M., M. L. Bender, P. P. Tans, J. M. C. White, J. T. Ellis, T. Conway, R. J. Francey, Global carbon sinks and their variability inferred from atmospheric CO2 and 13C, Science, 287, 24672470, 2000.
  • Birks, H. H., B. Ammann, Two terrestrial records of rapid climatic change during the glacial-Holocene transition (14,000–9,000 calender years B.P.) from Europe, Proc. Natl. Acad. Sci. USA, 97, 13901394, 2000.
  • Cao, M., F. I. Woodward, Dynamic responses of terrestrial ecosystem carbon cycling to global climate change, Nature, 393, 249251, 1998.
  • Caspersen, J. P., S. W. Pacala, J. C. Jenkins, G. C. Hurtt, P. R. Moorcroft, R. A. Birdsey, Contributions of land-use history to carbon accumulation in U.S. forests, Science, 290, 11481151, 2000.
  • , Cooperative Holocene Mapping Project (COHMAP) Members, Climate changes of the last 18,000 years: Observations and model simulations, Science, 241, 10431052, 1988.
  • Covey, C., K. M. Achuta Rao, S. J. Lambert, K. E. Taylor, Intercomparison of present and future climates simulated by coupled ocean-atmosphere GCMsPCMDI Rep. 66Program for Clim. Model Diagnosis and Intercomparison, Lawrence Livermore Natl. Lab., Univ. of Calif., Livermore, 2000.
  • Cox, P., R. Betts, C. Jones, S. Spall, I. Totterdell, Will carbon-cycle feedbacks accelerate global warming in the 21st century?, Nature, 408, 184187, 2000.
  • Cramer, W., et al., Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models, Global Change Biol., 7, 357373, 2001.
  • Crowley, T. J., Ice age terrestrial carbon changes revisited, Global Biogeochem. Cycles, 9, 377389, 1995.
  • Cubasch, U. R., R. Voss, G. C. Hegerl, J. Waszkewitz, T. J. Crowley, Simulation of the influence of solar radiation variations on the global climate with an ocean-atmosphere general circulation model, Clim. Dyn., 13, 757767, 1997.
  • Dai, A., I. Y. Fung, Can climate variability contribute to the “missing” CO2 sink?, Global Biogeochem. Cycles, 7, 599609, 1993.
  • Dixon, R. K., S. Brown, R. A. Houghton, A. M. Solomon, M. C. Trexler, J. Wisniewski, Carbon pools and flux of global forest ecosystems, Science, 263, 185190, 1994.
  • Etheridge, D. M., L. P. Steele, R. L. Langenfelds, R. J. Francey, J.-M. Barnola, V. I. Morgan, Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn, J. Geophys. Res., 101, 41154128, 1996.
  • Farquhar, G. D., S. vonCaemmerer, J. A. Berry, A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species, Planta, 149, 7890, 1980.
  • Foley, J., An equilibrium model of the terrestrial carbon budget, Tellus, Ser. B., 47, 310319, 1995.
  • Folland, C. K., T. R. Karl, J. R. Christy, R. A. Clarke, G. V. Gruza, J. Jouzel, M. E. Mann, J. Oerlemans, M. J. Salinger, S.-W. Wang, Observed climate variability and change, Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate ChangeJ. T. Houghton, et al., 99181, Cambridge Univ. Press, New York, 2001.
  • Giardina, C., M. Ryan, Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature, Nature, 404, 858861, 2000.
  • Hansen, J., A. Lacis, D. Rind, G. Russell, P. Stone, I. Fung, R. Ruedy, J. Lerner, Climate sensitivity: Analysis of feedback mechanisms, Climate Processes and Climate Sensitivity Geophys. Monogr. Ser:, 29, 130163, AGU, Washington, D. C., 1984.
  • Harvey, L. D., J. Gregory, M. Hoffert, A. Jain, M. Lal, R. Leemans, S. Raper, T. Wigley, J. deWolde, An introduction to simple climate models used in the IPCC Second Assessment Report IPCC Tech. Pap., II, Intergovt. Panel on Clim. Change, 1996.
  • Hättenschwiler, S., F. Miglietta, A. Raschi, C. Körner, Thirty years of in situ tree growth under elevated CO2: A model for future forest responses, Global Change Biol., 3, 463471, 1997.
  • Haxeltine, A., I. C. Prentice, BIOME 3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types, Global Biogeochem. Cycles, 10, 693703, 1996.
  • Hooss, G., R. Voss, K. Hasselmann, E. Maier-Reimer, F. Joos, A nonlinear impulse response model of the coupled carbon cycle-ocean-atmosphere climate systemTech. Rep. 290Max-Planck-Inst. für Meteorol., Hamburg, Germany, 1999.
  • Hooss, G., R. Voss, K. Hasselmann, K. E. Maier-Reimer, F. Joos, A nonlinear impulse response model of the coupled carbon cycle-ocean-atmosphere climate system, Clim. Dyn., 2001.
  • Houghton, J. T., L. G. M. Filho, B. A. Callander, N. Harris, A. Kattenberg, K. Maskell, Climate Change 1995-Science of Climate Change: Contribution of WGI to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, New York, 1996.
  • Houghton, R. A., The annual net flux of carbon to the atmosphere from changes in land use 1850–1990, Tellus, Ser. B, 51, 298313, 1999.
  • Huntingford, C., P. Cox, An analogue model to derive additional climate change scenarios from existing GCM simulations, Clim. Dyn., 16, 575586, 2000.
  • Jarvis, P., S. Linder, Botany — Constraints to growth of boreal forests, Nature, 405, 904905, 2000.
  • Joos, F., M. Bruno, Long-term variability of the terrestrial and oceanic carbon sinks and the budgets of the carbon isotopes 13C and 14C, Global Biogeochem. Cycles, 12, 277295, 1998.
  • Joos, F., M. Bruno, R. Fink, T. F. Stocker, U. Siegenthaler, C. Le Quéré, J. L. Sarmiento, An efficient and accurate representation of complex oceanic and biospheric models of anthropogenic carbon uptake, Tellus, Ser. B, 48, 397417, 1996.
  • Joos, F., J. C. Orr, U. Siegenthaler, Ocean carbon transport in a box-diffusion versus a general circulation model, J. Geophys. Res., 102, 1236712388, 1997.
  • Joos, F., R. Meyer, M. Bruno, M. Leuenberger, The variability in the carbon sinks as reconstructed for the last 1000 years, Geophys. Res. Lett., 26, 14371441, 1999a.
  • Joos, F., G.-K. Plattner, T. F. Stocker, O. Marchal, A. Schmittner, Global warming and marine carbon cycle feedbacks on future atmospheric CO2, Science, 284, 464467, 1999b.
  • Keeling, C. D., T. P. Whorl, Atmospheric CO2 records from sites in the SIO network, Trends '93: A Compendium of Data on Global ChangeT. Boden, et al., 1626, Carbon Dioxide Inf. Anal. Cent., Oak Ridge, Tenn., 1994.
  • Keeling, R. F., S. C. Piper, M. Heimann, Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration, Nature, 381, 218221, 1996.
  • Leemans, R., W. Cramer, The IIASA climate database for land areas on a grid with 0.5° resolutionRes. Rep. RR-91-18.Int. Inst. for Appl. Syst. Anal., Laxenburg, Austria, 1991.
  • Lloyd, J., J. A. Taylor, On the temperature dependence of soil respiration, Functional Ecol., 8, 315323, 1994.
  • Luo, Y., J. Reynolds, Y. Wang, A search for predictive understanding of plant responses to elevated CO2, Global Change Biol., 5, 143156, 1999.
  • MacDonald, G. M., R. W. D. Edwards, K. A. Moser, R. Pienitz, J. P. Smol, Rapid response of treeline vegetation and lakes to past climate warming, Nature, 361, 243246, 1993.
  • Maier-Reimer, E., U. Mikolajewicz, A. Winguth, Future ocean uptake of CO2: Interaction between ocean circulation and biology, Clim. Dyn., 12, 711721, 1996.
  • Marland, G., T. A. Boden, R. J. Andres, Global, regional and national annual CO2 emission estimates from fossil-fuel burning, hydraulic-cement production and gas flaring: 1950 to 1992, CDIAC Commun.Fall, 2021, 1995.
  • Matear, R. J., A. C. Hirst, Climate change feedback on the future oceanic CO2 uptake, Tellus, Ser. B, 51, 722733, 1999.
  • Mayle, F., L. Cwyner, Impact of the Younger Dryas cooling event upon lowland vegetation of Maritime Canada, Ecol. Monogr., 65, 129154, 1995.
  • McGuire, A. D., et al., Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate, and land-use effects with four process-based ecosystem models, Global Biogeochem. Cycles, 15, 183206, 2001.
  • Meehl, G. A., G. J. Boer, C. Covey, M. Latif, R. J. Stouffer, The Coupled Model Intercomparison Project (CMIP), Bull. Am. Meteorol. Soc., 81, 313318, 2000.
  • Meyer, R., F. Joos, G. Esser, M. Heimann, G. Hooss, G. Kohlmaier, W. Sauf, R. Voss, U. Wittenberg, The substitution of high-resolution terrestrial biosphere models and carbon sequestration in response to changing CO2 and climate, Global Biogeochem. Cycles, 13, 785802, 1999.
  • Monteith, J. L., Accomodation between transpiring vegetation and the convective boundary layer, J. Hydrol., 166, 251263, 1995.
  • Myhre, G., E. J. Highwood, K. P. Shine, F. Stordal, New estimates of radiative forcing due to well mixed greenhouse gases, Geophys. Res. Lett., 25, 27152718, 1998.
  • Nakićenović, et al., Special Report on Emission Scenarios, Cambridge Univ. Press, New York, 2000.
  • Neftel, A., E. Moor, H. Oeschger, B. Stauffer, Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries, Nature, 315, 4547, 1985.
  • Penner, J. A., et al., Aerosols, their direct and indirect effects, Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate ChangeJ. T. Houghton, et al., 289348, Cambridge Univ. Press, New York, 2001.
  • Plattner, G.-K., F. Joos, T. F. Stocker, O. Marchal, Feedback mechanisms and sensitivities of ocean carbon uptake under global warming, Tellus, Ser. B, 53, 564592, 2001.
  • Prather, M., et al., Atmospheric chemistry and greenhouse gases, Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate ChangeJ. T. Houghton, et al., 239287, Cambridge Univ. Press, New York, 2001.
  • Prentice, I. C., P. Bartlein, T. I. Webb, Vegetation change in eastern North America since the Last Glacial Maximum: A response to continuous climatic forcing, Ecology, 72, 20382056, 1991.
  • Prentice, I. C., M. Heimann, S. Sitch, The carbon balance of the terrestrial biosphere: Ecosystem models and atmospheric observations, Ecol. Appl., 10, 15531573, 2000.
  • Ramaswamy, V., O. Boucher, J. Haigh, D. Hauglustaine, J. Haywood, G. Myhre, T. Nakajima, G. Y. Shi, S. Solomon, Radiative forcing of climate change, Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate ChangeJ. T. Houghton, et al., 349416, Cambridge Univ. Press, New York, 2001.
  • Rustad, L., Warming effects on ecosystem functioning, Newsl. Global Change Terr. Ecosyst. Core Proj. IGBP, 16, 45, 2000.
  • Sarmiento, J. L., C. Le Quéré, Oceanic carbon dioxide uptake in a model of century-scale global warming, Science, 274, 13461350, 1996.
  • Schindler, D. W., S. E. Bayley, The biosphere as an increasing sink for atmospheric carbon: Estimates from increased nitrogen deposition, Global Biogeochem. Cycles, 7, 717733, 1993.
  • Shine, K. P., P. Forster, The effect of human activity on radiative forcing of climate change: A review of recent developments, Global Planet. Change, 20, 205225, 1999.
  • Shine, K., R. G. Derwent, D. J. Wuebbles, J.-J. Morcrette, Radiative forcing of climate, Climate Change: The IPCC Scientific AssessmentJ. T. Houghton, G. J. Jenkins, J. J. Ephraums, 4168, Cambridge Univ. Press, New York, 1990.
  • Shine, K., Y. Fouquart, V. Ramaswamy, S. Solomon, J. Srinivasan, Radiative forcing, Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission ScenariosJ. T. Houghton, et al., 163203, Cambridge Univ. Press, New York, 1994.
  • Siegenthaler, U., F. Joos, Use of a simple model for studying oceanic tracer distributions and the global carbon cycle, Tellus, Ser. B, 44, 186207, 1992.
  • Sitch, S., The role of vegetation dynamics in the control of atmospheric CO2 content, Ph.D. thesis,Lund Univ.,Lund, Sweden,2000.
  • Smith, T. M., H. H. Shugart, The transient response of terretrial carbon storage to a perturbed climate, Nature, 361, 523526, 1993.
  • Takahashi, T., J. Olafsson, J. G. Goddard, D. W. Chipman, S. C. Sutherland, Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: A comparative study, Global Biogeochem. Cycles, 7, 843878, 1993.
  • Townsend, A. R., B. H. Braswell, E. A. Holland, J. E. Penner, Spatial and temporal patterns in terrestrial carbon storage due to the deposition of fossil fuel nitrogen, Ecol. Appl., 6, 806814, 1996.
  • Trumbore, S. E., O. A. Chadwick, R. Amundson, Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change, Science, 272, 393396, 1996.
  • , United Nations Environment Programme/World Meteorological Organization (UNEP/WMO), Scientific assessment of ozone depletionGlobal Ozone Res. Monitor. Proj. Rep. 44, 732World Meteorol. Org., Geneva, Switzerland, 1998.
  • Voss, R., U. Mikolajewicz, Long-term climate changes due to increased CO2 concentration in the coupled atmosphere-ocean general circulation model ECHAM3/LSGTech. Rep. 298Max-Planck Inst. für Meteorol., Hamburg, Germany, 1999.
  • Voss, R., U. Mikolajewicz, Long-term climate changes due to increased CO2 concentration in the coupled atmosphere-ocean general circulation model ECHAM3/LSG, Clim. Dyn., 17, 4560, 2001.
  • Voss, R., R. Sausen, U. Cubasch, Periodically synchonously coupled integrations with the atmosphere-ocean general circulation model ECHAM3/LSG, Clim. Dyn., 14, 249266, 1998.