SEARCH

SEARCH BY CITATION

References

  • Abrantes, F., and M. T. Moita (1999), Water column and recent sediment data on diatoms and coccolithophorids, off Portugal, confirm sediment record of upwelling events, Oceanol. Acta, 22, 319336.
  • Aksnes, D. L., J. K. Egge, R. Rosland, and B. R. Heimdal (1994), Representation of Emiliania huxleyi in phytoplankton simulation models: A 1st approach, Sarsia, 79, 291300.
  • Andersen, N., P. J. Müller, G. Kirst, and R. R. Schneider (1999), Alkenone δ13C as a proxy for past pCO2 in surface waters: Results from the Late Quaternary Angola Current, in Use of Proxies in Paleoceanography: Examples from the South Atlantic, pp. 469488, edited by G. Fischer, and G. Wefer, Spinger-Verlag, New York.
  • Andruleit, H. (1997), Coccolithophore fluxes in the Norwegian-Greenland Sea: Seasonality and assemblage alterations, Mar. Micropaleontol., 31(1–2), 4564.
  • Balch, W. M., P. M. Holligan, S. G. Ackleson, and K. J. Voss (1991), Biological and optical properties of mesoscale coccolithophorid blooms in the Gulf of Maine, Limnol. Oceanogr., 36, 623643.
  • Baumann, K.-H., M. Cepek, and H. Kinkel (1999), Coccolithophores as indicators of ocean water masses, surface water temperature, and paleoproductivity, in Use of Proxies in Paleoceanography: Examples from the South Atlantic, edited by G. Fischer, and G. Wefer, Springer-Verlag, New York.
  • Bentaleb, I., J. O. Grimalt, F. Vidussi, J.-C. Marty, V. Martin, M. Denis, C. Hatté, and M. Fontugne (1999), The C37 alkenone record of seawater temperature during seasonal thermocline stratification, Mar. Chem., 64, 301313.
  • Bidigare, R. R., K. L. Hanson, K. O. Buesseler, S. G. Wakeham, K. H. Freeman, R. D. Pancost, F. J. Millero, P. Steinberg, B. N. Popp, M. Latasa, M. R. Landry, and E. A. Laws (1999), Iron-stimulated changes in 13C fractionation and export by equatorial Pacific phytoplankton: Toward a paleogrowth rate proxy, Paleoceanography, 14, 589595.
  • Birkenes, I., and T. Braarud (1952), Phytoplankton in the Oslo Fjord during a “Coccolithus huxleyi summer”, Avh. Nor. Vidensk. Akad. Oslo, 2, 123.
  • Bollmann, J. (1997), Morphology and biogeography of Gephyrocapsa coccoliths in Holocene sediments, Mar. Micropaleontol., 29, 319350.
  • Bollmann, J., K.-H. Baumann, and H. R. Thierstein (1998), Global dominance of Gephyrocapsa coccoliths in the late Pleistocene: Selective dissolution, evolution, or global environmental change? Paleoceanography, 13, 517529.
  • Bollmann, J., B. Brabec, M. Y. Cortés, and M. Geisen (1999), Determination of absolute coccolith abundances in deep-sea sediments by spiking with microbeads and spraying (SMS-method), Mar. Micropaleontol., 38, 2938.
  • Brand, L.E. (1991), Minimum iron requirements of marine phytoplankton and implications for the biogeochemical control of new production, Limnol. Oceanogr., 36(8), 17561771.
  • Brand, L. E. (1994), Physiological ecology of marine coccolithophores, in Coccolithophores, pp. 3949, edited by A. Winter, and W. G. Siesser, Cambridge Univ. Press, New York.
  • Broerse, A. T. C., P. Ziveri, J. E. Van Hinte, and S. Honjo (2000), Coccolithophore export production, species composition, and coccolith-CaCO3 fluxes in the NE Atlantic (34°N21°W and 48°N21°W), Deep Sea Res., Part II, 47(9–11), 18771905.
  • Brown, C. W., and J. A. Yoder (1994), Coccolithophorid blooms in the global ocean, J. Geophys. Res., 99(C4), 74677482.
  • Brownlee, C. D., M. Davis, N. Nimer, L. F. Dong, and M. J. Merrett (1995), Calcification, photosynthesis and intracellular regulation in Emiliania huxleyi, Bull. Inst. Oceanogr., 14, 1935.
  • Buitenhuis, E., J. van Bleijswijk, D. Bakker, and M. Veldhuis (1996), Trends in inorganic and organic carbon in a bloom of Emiliania huxleyi in the North Sea, Mar. Ecol. Prog. Ser., 143, 271282.
  • Cacho, I., C. Pelejero, J. O. Grimalt, A. Calafat, and M. Canals (1999), C37 alkenone measurements of sea surface temperature in the Gulf of Lions (NW Mediterranean), Org. Geochem., 30, 557566.
  • Carlucci, A. F., and P. M. Bowes (1970), Vitamin production and utilization by phytoplankton in mixed mixed cultures, J. Phycol., 6, 393400.
  • Chester, R., and S. R. Aston (1976), The geochemistry of deep-sea sediments, in Chemical Oceanography, pp. 281390, edited by J. P. Riley, and R. Chester, Academic, San Diego, Calif.
  • Conte, M. H., and G. Eglinton (1993), Alkenone and alkenoate distributions within the euphotic zone of the eastern North Atlantic: Correlation with production temperature, Deep Sea Res., Part I, 40, 19351961.
  • Conte, M. H., G. Eglinton, and L. A. S. Madureira (1992), Long-chain alkenones and alkyl alkenoates as palaeotemperature indicators—Their production, flux and early sedimentary diagenesis in the eastern North Atlantic, Org. Geochem., 19, 287298.
  • Conte, M. H., A. Thompson, and G. Eglinton (1994a), Primary production of lipid biomarker compounds by Emiliania huxleyi: Results from an experimental mesocosm study in fjords of southern Norway, Sarsia, 79, 319331.
  • Conte, M. H., J. K. Volkman, and G. Eglinton (1994b), Lipid biomarkers of the Haptophyta, in The Haptophyte Algae, pp. 351377, edited by J. C. Green, and B. S. C. Leadbeater, Clarendon, Oxford, England.
  • Conte, M. H., J. C. Green, and G. Eglinton (1995), Lipid biomarker diversity in the coccolithophorid Emiliania huxleyi (PRYMNESIOPHYCEAE) and the related species Gephyrocapsa oceanica, J. Phycol., 31, 272282.
  • Conte, M. H., A. Thompson, D. Lesley, and R. P. Harris (1998), Genetic and physiological influences on the alkenone/alkenoate versus growth temperature relationship in Emiliania huxleyi and Gephyrocapsa oceanica, Geochim. Cosmochim. Acta, 62, 5168.
  • Crawford, D. W., and D. A. Purdie (1997), Increase of pCO2 during blooms of Emiliania huxleyi: Theoretical considerations on the asymmetry between acquisition of HCO3 and free CO2, Limnol. Oceanogr., 42, 365372.
  • Dong, L. F., N. A. Nimer, E. Okus, and M. J. Merrret (1993), Dissolved inorganic carbon utilization in relation to calcite production in Emiliania huxleyi (Lohmann) Kamptner, New Phytol., 123(4), 679684.
  • Edvardsen, B., W. Eikrem, J. C. Green, R. A. Andersen, S. Y. Moon-Van Der Staay, and L. K. Medlin (2000), Phylogenetic reconstructions of the Haptophyta inferred from 18S RNA, Phycologia, 39(1), 1935.
  • Eek, M. K., M. J. Whiticar, J. K. B. Bishop, and C. S. Wong (1999), Influence of nutrients on carbon isotope fractionation by natural populations of Prymnesiophyte algae in NE Pacific, Deep Sea Res., Part II, 46, 28632876.
  • Egge, J. K., and B. R. Heimdal (1994), Blooms of phytoplankton including Emiliania huxleyi (Haptophyta): Effects of nutrient supply in different N–P ratios, Sarsia, 79, 333348.
  • Epstein, B. L., S. D'Hondt, J. G. Quinn, J. Zhang, and P. E. Hargraves (1998), An effect of dissolved nutrient concentrations on alkenone-based temperature estimates, Paleoceanography, 13, 122126.
  • Estrada, M., R. A. Varela, J. Salat, A. Cruzado, and E. Arias (1999), Spatio-temporal variability of the winter phytoplankton distribution across the Catalan and North Balearic fronts (NW Mediterranean), J Plankton Res., 21, 120.
  • Farrimond, P., G. Eglinton, and S. C. Brassell (1986), Alkenones in Cretaceous black shales, Blake-Bahama Basin, western North Atlantic, in Advances in Organic Geochemistry 1985, pp. 897903, edited by D. Leythaeuser, and J. Rullkötter, Pergamon, Tarrytown, N. Y.
  • Gartner, S. (1988), Paleoceanography of the Mid-Pleistocene, Mar. Micropaleontol., 13, 2346.
  • Giraudeau, J., P. M. S. Monteiro, and K. Nikodemus (1993), Distribution and malformation of living coccolithophores in the northern Benguela upwelling system off Namibia, Mar. Micropaeontol., 22, 93110.
  • Heimdal, B. R., J. K. Egge, M. J. W. Veldhuis, and P. Westbroek (1994), The 1992 Norwegian Emiliania huxleyi experiment—An overview, Sarsia, 79, 285290.
  • Herbert, T. D., J. D. Schuffert, D. Thomas, C. Lange, A. Weinheimer, A. Peleoalampay, and J. C. Herguera (1998), Depth and seasonality of alkenone production along the California margin inferred from a core top transect, Paleoceanography, 13, 263271.
  • Hine, N., and P. P. E. Weaver (1998), The Quaternary, in Calcareous Nannofossil Biostratigraphy, pp. 266283, edited by P. Bown, Chapman and Hall, New York.
  • Holligan, P. M., et al., (1993), A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North Atlantic, Global Biogeochem. Cycles, 7, 879900.
  • Hulbert, E. M. (1990), Description of phytoplankton and nutrients in spring in the western North Atlantic Ocean, J. Plankton Res., 12, 128.
  • Jasper, J. P., J. M. Hayes, A. C. Mix, and F. G. Prahl (1994), Photosynthetic fractionation of 13C and concentrations of dissolved CO2 in the central equatorial Pacific during the last 255,000 years, Paleoceanography, 9, 781798.
  • Jordan, R. W., M. Zhao, G. Eglinton, and P. P. E. Weaver (1996), Coccolith and alkenone stratigraphy at an upwelling site off NW Africa (ODP 658C) during the last 130,00 years, in Microfossils and Oceanic Environments, pp. 111130, edited by A. Moguilevsky, and R. Whatley, Univ. of Wales, Aberystwyth Press, Aberystwyth, Wales.
  • Kinkel, H., K.-H. Baumann, and M. Cepek (2000), Coccolithophores in the equatorial Atlantic Ocean: Response to seasonal and Late Quaternary surface water variability, Mar. Micropaleontol., 39(1–4), 87112.
  • Kleijne, A., D. Kroon, and W. Zevenboom (1989), Phytoplankton and foraminiferal frequencies in northern Indian Ocean and Red Sea surface waters, Neth. J. Sea Res., 24, 531539.
  • Krebs, C. J. (1978), Ecology: The Experimental Analysis of Distribution and Abundance, 2nd ed., 678 pp., HarperCollins, New York.
  • Levitus, S. (1994), World Ocean Atlas 1994, U.S. Dep. of Commer., Washington, D. C.
  • Marlowe, I. T., J. C. Green, A. C. Neal, S. C. Brassell, G. Eglinton, and P. A. Course (1984), Long chain (n-C37-C39) alkenones in the Prymnesiophyceae: Distribution of alkenones and other lipids and their taxonomic significance, Br. Phycol J., 19, 203216.
  • Marlowe, I. T., S. C. Brassell, G. Eglinton, and J. C. Green (1990), Long-chain alkenones and alkyl alkenoates and the fossil coccolith record of marine sediments, Chem. Geol., 88, 349375.
  • McIntyre, A. (1967), Coccoliths as paleoclimatic indicators of pleistocene glaciation, Science, 158, 13141317.
  • Molfino, B., and A. McIntyre (1990), Precessional forcing of nutricline dynamics in the equatorial Atlantic, Science, 249, 766769.
  • Müller, P. J., M. Cepek, G. Ruhland, and R. R. Schneider (1997), Alkenone and coccolithophorid species changes in late Quaternary sediments from the Walvis Ridge: Implications for the alkenonne paleotemperature method, Palaeogeogr. Palaeoclimatol. Palaeoecol., 135, 7196.
  • Müller, P. J., G. Kirst, G. Ruhland, I. von Storch, and A. Rosell-Melé (1998), Calibration of the alkenone paleotemperature index based on core-tops from the eastern South Atlantic and global ocean (60°N–60°S), Geochim. Cosmochim. Acta, 62, 17571772.
  • Nanninga, H. J., and T. Tyrrell (1996), Importance of light for the formation of algal blooms by Emiliania huxleyi, Mar. Ecol. Prog. Ser., 136, 195203.
  • Nimer, N. A., C. Brownlee, and M. J. Merrett (1994), Carbon dioxide availability, intracellular pH and growth rate of the coccolithophore Emiliania huxleyi, Mar. Ecol. Prog. Ser., 109, 257262.
  • Ohkouchi, N., K. Kawamura, H. Kawahata, and H. Okada (1999), Depth ranges of alkenone production in the central Pacific Ocean, Global Biogeochem. Cycles, 13, 695704.
  • Okada, H., and S. Honjo (1973), The distribution of oceanic coccolithophorids in the Pacific, Deep Sea Res. Oceanogr. Abstr., 20, 355374.
  • Pagani, M., K. H. Freeman, and M. A. Arthur (1999), Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses, Science, 285, 876879.
  • Perch-Nielsen, K. (1985), Cenozoic calcareous nannofossils, in Plankton Stratigraphy, pp. 427554, edited by H. M. Bolli, J. B. Saunders, and K. Perch-Nielsen, Cambridge Univ. Press, New York.
  • Popp, B. N., F. Kenig, S. G. Wakeham, E. A. Laws, and R. R. Bidigare (1998a), Does growth rate affect ketone unsaturation and intracellular carbon isotopic variability in Emiliania huxleyi?, Paleoceanography, 13, 3541.
  • Popp, B. N., E. A. Laws, R. R. Bidigare, J. E. Dore, K. L. Hanson, and S. G. Wakeham (1998b), Effect of phytoplankton cell geometry on carbon isotopic fractionation, Geochim. Cosmochim. Acta, 62, 6977.
  • Prahl, F. G., L. A. Muelhausen, and D. A. Zahnle (1988), Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions, Geochim. Cosmochim. Acta, 52, 23032310.
  • Prahl, F. G., R. B. Collier, J. Dymond, M. Lyle, and M. A. Sparrow (1993), A biomarker perspective on prymnesiophyte productivity in the northeast Pacific Ocean, Deep Sea Res., Part I, 40, 20612076.
  • Pujos, A. (1992), Calcareous nannofossils of Plio-Pleistocene sediments from the northwestern margin of tropical Africa, in Upwelling Systems: Evolution Since the Early Miocene, pp. 343358, edited by C. P. Summerhayes, W. L. Prell, and K. C. Emeis, Geol. Soc., Avon, England.
  • Purdie, D. A., and M. S. Finch (1994), Impact of coccolithophorid bloom on dissolved carbon dioxide in sea water enclosures in a Norwegian fjord, Sarsia, 79, 379387.
  • Riebesell, U., A. T. Revill, D. G. Holdsworth, and J. K. Volkman (2000), The effects of varying CO2 concentration on lipid composition and carbon isotope fractionation in Emiliania huxleyi, Geochim. Cosmochim. Acta, in press.
  • Riegman, R., A. A. M. Noordeloos, and G. C. Cadee (1992), Phaeocystis blooms and eutrophication of the continental coastal zones of the North Sea, Mar. Biol., 112, 479484.
  • Riegman, R., W. Stolte, and A. A. M. Noordeloos (1998), A model system approach to biologic climate forcing: The example of Emiliania huxleyi, NIOZ Rapp. 8, Neth. Inst. for Sea Res., Den Burg, Netherlands.
  • Robertson, J. E., C. Robinson, D. R. Turner, P. Holligan, A. J. Watson, P. Boyd, E. Fernandez, and M. Finch (1994), The impact of a coccolithophore bloom on oceanic carbon uptake in the northeast Atlantic during summer 1991, Deep Sea Res., Part I, 41, 287314.
  • Rosell-Melé, A., G. Eglinton, U. Pflaumann, and M. Sarnthein (1995), Atlantic core-top calibration of the U37k′ index as a sea-surface palaeotemperature indicator, Geochim. Cosmochim. Acta, 59, 30993107.
  • Samtleben, C. (1980), Die Evolution der Coccolithophoriden—Gattung Gephyrocapsa nach Befunden im Atlantik, Paläont. Z., 54, 91127.
  • Samtleben, C., P. Schaefer, H. Andruleit, A. Baumann, K.-H. Baumann, A. Kohly, J. Matthiessen, and A. Schroeder-Ritzrau (1995), Plankton in the Norwegian-Greenland Sea: From living communities to sediment assemblages—An actualistic approach, Geol. Rundsch., 84, 108136.
  • Sanders, D. (1997), Alkenones in sinking particles in the northeast Atlantic: Regional and seasonal variations, Rep. 290, 101 pp. , Inst. für Meereskunde, Kiel, Germany.
  • Sikes, E. L., and J. K. Volkman (1993), Calibration of alkenone unsaturation ratios U37k′ for palaeotemperature estimation in cold polar waters, Geochim. Cosmochim. Acta, 57, 18831889.
  • Sikes, E. L., J. K. Volkman, L. G. Robertson, and J.-J. Pichon (1997), Alkenones and alkenes in surface water and sediments of the Southern Ocean: Implications for paleotemperature estimation in polar regions, Geochim. Cosmochim. Acta, 61, 14951505.
  • Sprengel, C., K.-H. Baumann, and S. Neuer (2000), Seasonal and interannual variations of coccolithophore fluxes and species compositions in sediment traps north of Gran Canaria (29°N 15°W), Mar. Micropaleontol., 39(1–4), 157178.
  • Takahashi, K., and H. Okada (2000), Environmental control on the biogeography of modern coccolithophores in the south-eastern Indian Ocean offshore of Western Australia, Mar. Micropaleontol., 39(1–4), 7386.
  • Ternois, Y., M.-A. Sicre, A. Boireau, M. H. Conte, and G. Eglinton (1997), Evaluation of long-chain alkenones as paleo-temperature indicators in the Mediterranean Sea, Deep Sea Res., Part I, 44, 271286.
  • Ternois, Y., M.-A. Sicre, A. Boireau, L. Beaufort, J.-C. Miquel, and C. Jeandel (1998), Hydrocarbons, sterols and alkenones in sinking particles in the Indian Ocean sector of the Southern Ocean, Org. Geochem., 28, 489501.
  • Thierstein, H. R., K. R. Geitzenauer, B. Molfino, and N. J. Shackleton (1977), Global synchroneity of late Quaternary coccolith datum levels: Validation by oxygen isotopes, Geology, 5, 400404.
  • Thomsen, C., D. E. Schulz-Bull, G. Petrick, and J. C. Duinker (1998), Seasonal variability of long-chain alkenone flux and the effect on the U37k′-index in the Norwegian Sea, Org. Geochem., 28, 311323.
  • Tyrrell, T., and A. H. Taylor (1996), A modelling study of Emiliania huxleyi in the NE Atlantic, J. Mar. Syst., 9, 83112.
  • Versteegh, G. J. M., H.-J. Bosch, and J. W. de Leeuw (1997), Potential palaeoenvironmental information of C24 to C36 mid-chain diols, keto-ols and mid-chain hydroxy fatty acids: A critical review, Org. Geochem., 27, 113.
  • Versteegh, G. J. M., J. H. F. Jansen, J. W. de Leeuw, and R. R. Schneider (2000), Mid-chain diols in SE Atlantic sediments: A new tool for tracing past sea surface water masses? Geochim. Cosmochim. Acta, 64(11), 18791892.
  • Villanueva, J., J. O. Grimalt, L. D. Labeyrie, E. Cortijo, L. Vidal, and J. Louis-Turon (1998), Precessional forcing of productivity in the North Atlantic Ocean, Paleoceanography, 13, 561571.
  • Volkman, J. K., S. M. Barrett, S. I. Blackburn, and E. L. Sikes (1995), Alkenones in Gephyrocapsa oceanica: Implications for studies of paleoclimate, Geochim. Cosmochim. Acta, 59, 513520.
  • Wang, P., and C. Samtleben (1983), Calcareous nannoplankton in surface sediments of the East China Sea, Mar. Micropaleontol., 8, 249259.
  • Winter, A., R. Jordan, and P. H. Roth (1994), Biogeography of living coccolithophores in ocean waters, in Coccolithophores, pp. 161177, edited by A. Winter, and W. G. Siesser, Cambridge Univ. Press, New York.
  • Wollast, R. (1994), The relative importance of biomineralization and dissolution of CaCO3 in the global carbon cycle, in Present and Past Biomineralization Processes, pp. 1336, edited by F. Doumenge, D. Allemand, and A. Toulemont, Mus. Océanogr., Monaco.
  • Young, J. R. (1990), Size variation in Neogene Reticulofenestra coccoliths from Indian Ocean DSDP Cores, Micropaleontology, 9, 7186.
  • Young, J. R. (1994), Function of coccoliths, in Coccolithophores, pp. 6382, edited by A. Winter, and W. G. Siesser, Cambridge Univ. Press, New York.
  • Young, J. R. (1998), Neogene, in Calcareous Nannofossil Biostratigraphy, pp. 304322, edited by P. R. Bown, Kluwer Acad., Norwell, Mass.
  • Young, J. R., and P. Ziveri (2000), Calculation of coccolith volume and its use in calibration of carbonate flux estimates, Deep Sea Res., Part II, 47(9–11), 16791700.
  • Young, J. R., P. R. Brown, and J. A. Burnett (1994), Palaeontological perspectives, in The Haptophyte Algae, Syst. Assoc. Spec. Vol. 1, pp. 379392, edited by J. C. Green, and B. S. C. Leadbeater, Clarendon, Oxford, England.
  • Ziveri, P., A. T. C. Broerse, J. E. van Hinte, P. Westbroek, and S. Honjo (2000), The fate of coccoliths at 48°N 21°W, northeastern Atlantic, Deep Sea Res., Part II, 47(9–11), 18531875.