SEARCH

SEARCH BY CITATION

References

  • Agee, C. B., J. Li, M. C. Shannon, and S. Circone (1995), Pressure-temperature phase diagram for the Allende Meteorite, J. Geophys. Res., 100, 17,72517,740.
  • Asimow, P. D., M. M. Hirschmann, and E. M. Stolper (1997), An analysis of variations in isentropic melt productivity, Philos. Trans. R. Soc. London Ser. A, 355, 255281.
  • Asimow, P. D., M. M. Hirschmann, and E. M. Stolper (2000), Calculation of peridotite partial melting from thermodynamic models of minerals and melts, IV, Adiabatic decompression and the composition and mean properties of mid-ocean ridge basalts, J. Petrol., in press.
  • Baker, M. B., and E. M. Stolper (1994), Determining the composition of high-pressure mantle melts using diamond aggregates, Geochim. Cosmochim. Acta, 58, 28112827.
  • Baker, M. B., M. M. Hirschmann, M. S. Ghiorso, and E. M. Stolper (1995), Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations, Nature, 375, 308311.
  • Bertka, C. M., and J. R. Holloway (1994), Anhydrous partial melting of an iron-rich mantle, I, Subsolidus phase assemblages and partial melting phase relations at 10 to 30 kbar, Contrib. Mineral. Petrol., 115, 313322.
  • Blundy, J. D., T. J. Falloon, B. J. Wood, and J. A. Dalton (1995), Sodium partitioning between clinopyroxene and silicate melts, J. Geophys. Res., 100, 15,50115,515.
  • Canil, D. (1992), Orthopyroxene stability along the peridotite solidus and the origin of cratonic lithosphere beneath Southern Africa, Earth. Planet. Sci. Lett, 111, 8395.
  • Falloon, T. J., and D. H. Green (1988), Anhydrous partial melting of peridotite from 8 to 35 kb and the petrogenesis of MORB, J. Petrol., Lithosphere Issue, 379414.
  • Falloon, T. J., D. H. Green, C. J. Hatton, and K. L. Harris (1988), Anhydrous partial melting of a fertile and depleted peridotite from 2 to 30 Kb and application to basalt petrogenesis, J. Petrol., 29, 12571282.
  • Falloon, T. J., D. H. Green, L. V. Danyushevsky, and U. H. Faul (1999), Peridotite melting at 1.0 and 1.5 GPa: An experimental evaluation of techniques using diamond aggregates and mineral mixes for determination of near-solidus melts, J. Petrol., 40, 13431375.
  • Galer, S. J., and R. K. O'Nions (1986), Magmagenesis and the mapping of chemical and isotopic variations in the mantle, Chem. Geol., 56, 4561.
  • Gudfinnsson, G. H., and D. C. Presnall (2000), Melting behaviour of model lherzolite in the system CaO-MgO-Al2O3-FeO at 0.7–2.8 GPa, J. Petrol., 41, 12411269.
  • Herzberg, C., M. Feigenson, C. Skuba, and E. Ohtani (1988), Majorite fractionation recorded in the geochemistry of peridotites from South Africa, Nature, 332, 823826.
  • Herzberg, C., P. Raterron, and J. Zhang (2000), New experimental observations on the anhydrous solidus for peridotite KLB-1, Geochem. Geophys. Geosyst., 10.1029/2000GC000089 in press.
  • Hirose, K., and I. Kushiro (1993), Partial melting of dry peridotites at high pressures: Determination of compositions of melts segregated from peridotite using aggregates of diamond, Earth. Planet. Sci. Lett., 114, 477489.
  • Hirose, K., and I. Kushiro (1998), The effect of melt segregation on polybaric mantle melting: Estimation from the incremental melting experiments, Phys. Earth Planet. Int., 107, 111118.
  • Hirschmann, M. M., M. B. Baker, and E. M. Stolper (1998), The effect of alkalis on the silica content of mantle-derived magmas, Geochim. Cosmochim. Acta, 62, 883902.
  • Hirschmann, M. M., M. S. Ghiorso, P. D. Asimow, and E. M. Stolper (1999), Calculation of peridotite partial melting from thermodynamic models of minerals and melts, III, Controls on isobaric melt productivity and the effect of water on melt, J. Petrol., 40, 831851.
  • Holloway, J. R. (1998), Graphite-melt equilibria during mantle melting: Constraints on CO2 in MORB magmas and the carbon content of the mantle, Chem. Geol., 147, 8997.
  • Hirth, G. H., and D. L. Kohlstedt (1996), Water in the oceanic upper mantle: Implications for rheology, melt extraction, and evolution of the lithosphere, Earth. Planet. Sci. Lett., 144, 93108.
  • Ito, G., Y. Shen, G. Hirth, and C. J. Wolfe (1999), Mantle flow, melting, and dehydration of the Iceland mantle plume, Earth. Planet. Sci. Lett., 16, 8196.
  • Iwamori, H., D. McKenzie, and E. Takahashi (1995), Melt generation by isentropic mantle upwelling, Earth. Planet. Sci. Lett., 134, 253266.
  • Johannes, W., P. M. Bell, H. K. Mao, A. L. Boettcher, D. W. Chipman, J. F. Hays, R. C. Newton, and F. Seifert (1971), An Interlaboratory comparison of piston-cylinder pressure calibration using the albite-breakdown reaction, Contrib. Mineral. Petrol., 32, 2438.
  • Karato, S., and H. Jung (1998), Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle, Earth. Planet. Sci. Lett., 158, 193207.
  • Kogiso, T., K. Hirose, and E. Takahashi (1999), Melting experiments on homogeneous mixtures of peridotite and basalt: Application to the genesis of ocean island basalts, Earth. Planet. Sci. Lett., 162, 4561.
  • Kushiro, I. (1996), Partial melting of a fertile mantle peridotite at high pressure and experimental study using aggregates of diamond, in Earth Processes: Reading the Isotopic Clock, Geophys. Monogr. Ser., VOL. 95, edited by A. Basu, and S. Hart, pp. 109122, AGU, Washington, D. C.
  • Langmuir, C. H., E. M. Klein, and T. Plank (1992), Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges, in Mantle Flow and Melt Generation at Mid-Ocean Ridges, Geophys. Monogr. Ser., vol. 71, edited by J. P. Morgan, D. K. Blackmun, and J. M. Sinton, pp. 183280, AGU, Washington, D. C.
  • Longhi, J. (1998), The anhydrous mantle solidus? New experiments in CMAS, Eos Trans. AGU, 79(45), Fall Meet. Suppl., F1005.
  • McDonough, W. F., and R. L. Rudnick (1998), Mineralogy and composition of the upper mantle, Rev. Mineral., 37, 139164.
  • McKenzie, D. (1984), The generation and compaction of partial melts, J. Petrol., 25, 713765.
  • McKenzie, D., and M. J. Bickle (1988), The volume and composition of melt generated by extension of the lithosphere, J. Petrol., 29, 625679.
  • Pertermann, M., and M. M. Hirschmann (1999), Partial melting experiments on a MORB-like pyroxenite at 3.0 GPa and 1300–1500°C, Eos Trans. AGU, 80(46), Fall Meet. Suppl., F1112.
  • Pickering-Witter, J. M., and A. D. Johnston (2000), The effects of variable mineral proportions on the melting systematics of fertile peridotitic assemblages, Contrib. Mineral. Petrol., in press.
  • Pickering-Witter, J., and C. E. Lesher (1999), Melting systematics of a clinopyroxene-rich peridotite at 3.6 GPa, Eos Trans. AGU, 80(46), Fall Meet. Suppl., F1125.
  • Plank, T., and C. H. Langmuir (1992), Effects of the melting regime on the composition of the oceanic crust, J. Geophys. Res., 97, 19,74919,770.
  • Presnall, D. (1969), The geometrical analysis of partial fusion, Am. J. Sci., 267, 11781194.
  • Robinson, J. A. C., and B. J. Wood (1998), The depth of the spinel to garnet transition at the peridotite solidus, Earth. Planet. Sci. Lett., 164(1–2), 277284.
  • Robinson, J. A. C., B. J. Wood, and J. D. Blundy (1998), The beginning of melting of fertile and depleted peridotite at 1.5 GPa, Earth. Planet. Sci. Lett., 155, 97111.
  • Schiano, P., and R. Clocchiatti (1994), Worldwide occurrence of silica-rich melts in sub-continental and sub-oceanic mantle minerals, Nature, 368, 621624.
  • Schwab, B. E., and A. D. Johnston (2000), Melting systematics of modally variable, compositionally intermediate peridotite the effects of mineral fertility, J. Petrol., in press.
  • Shen, Y., and D. W. Forsyth (1995), Geochemical constraints on initial and final depths of melting beneath mid-ocean ridges, J. Geophys. Res., 100, 22112237.
  • Shaw, D. M. (1970), Trace element fractionation during anatexis, Geochim. Cosmochim. Acta., 34, 237242.
  • Soulard, H., and B. J. Wood (1994), Lherzolite partial melting: closer to primary liquids, Min. Mag., 58A, 866867.
  • Tabit, A., J. Kornprobst, and A. B. Woodland (1997), Les Peridotites a grenat du massif des Beni Bousera (Maroc): Melanges tectoniques et interdiffusion du fer et du magnesium, C. R. Acad. Sci., Ser. II., 325, 665670.
  • Takahashi, E., T. Shimazaki, Y. Tsuzaki, and H. Yoshida (1993), Melting study of a peridotite KLB-1 to 6.5 GPa, and the origin of basaltic magmas, Philos. Trans. R. Soc. London, Ser. A, 342, 105120.
  • Walker, D., C. B. Agee, and Y. Zhang (1988), Fusion curve slope and crystal/liquid buoyancy, J. Geophys. Res., 93, 313323.
  • Walter, M. J. (1998), Melting of garnet peridotite and the origin of komatiite and depleted lithosphere, J. Petrol., 39, 2960.
  • Walter, M. J., and D. C. Presnall (1994), Melting behavior of simplified lherzolite in the system CaO-MgO-Al2O3-SiO2-Na2O from 7 to 35 kbar, J. Petrol., 35, 329359.
  • Yaxley, G. M. (2000), Experimental study of the phase and melting relations of homogeneous basalt + peridotite mixtures and implications for the petrogenesis of flood basalts, Contrib. Mineral. Petrol., 139, 326338.
  • Yaxley, G. M., and D. H. Green (1998), Reactions between eclogite and peridotite: Mantle refertilization by subduction of oceanic crust, Schweiz. Mineral. Perogr. Mitt., 78, 243255.
  • Zhang, J., and C. Herzberg (1994), Melting experiments on anhydrous peridotite KLB-1 from 5.0 to 22.5 GPa, J. Geophys. Res., 99, 17,72917,742.