Trends in evaporation and surface cooling in the Mississippi River Basin


  • P. C. D. Milly,

  • K. A. Dunne


A synthesis of available data for the Mississippi River basin (area 3 × 106 km²) reveals an upward trend in evaporation during recent decades, driven primarily by increases in precipitation and secondarily by human water use. A cloud-related decrease in surface net radiation appears to have accompanied the precipitation trend. Resultant evaporative and radiative cooling of the land and lower atmosphere quantitatively explains downward trends in observed pan evaporation. These cooling tendencies also reconcile the observed regional atmospheric cooling with the anticipated regional ‘greenhouse warming.’ If recent high levels of precipitation (which correlate with the North Atlantic Oscillation) are mainly caused by an internal climatic fluctuation, an eventual return to normal precipitation could reveal heretofore-unrealized warming in the basin. If, instead, they are caused by some unidentified forcing that will continue to grow in the future, then continued intensification of water cycling and suppression of warming in the basin could result.