Based upon their geochemical similarity, we propose that the 3.5 Ga Barberton basaltic komatiites (BK) are the Archean equivalents of modern boninites, and were produced by the same melting processes (i.e. hydrous melting in a subduction zone). The Barberton komatiites also share some geochemical characteristics with boninites, including petrologic evidence for high magmatic H2O contents. Experimental data indicates that the Archean sub-arc mantle need only be 1500–1600°C to produce hydrous komatiitic melts. This is considerably cooler than estimates of mantle temperatures assuming an anhydrous, plume origin for komatiites (up to 1900°C). The depleted mantle residue that generates the Barberton komatiites and BK will be cooled and metasomatised as it resides beneath the fore-arc, and may represent part of the material that formed the Kaapvaal cratonic keel.