• Martin Frank

    1. Department of Earth Sciences, Institute for Isotope Geology and Mineral Resources, Eidgenössische Technische Hochschule, Zürich, Switzerland
    Search for more papers by this author


[1] The radiogenic isotope composition of dissolved trace metals in the ocean represents a set of relatively new and not yet fully exploited tracers with a large potential for oceanographic and paleoceanographic research on timescales from the present back to at least 60 Ma. The main topic of this review are those trace metals with oceanic residence times on the order of or shorter than the global mixing time of the ocean (Nd, Pb, Hf, and, in addition, Be). Their isotopic composition in the ocean has varied as a function of changes in paleocirculation, source provenances, style and intensity of weathering on the continents, as well as orogenic processes. The relative importance of these processes for each trace metal is evaluated, which is a prerequisite for reliable interpretation of their time series in terms of changes in paleocirculation or weathering inputs. This analysis of processes includes a discussion of the long-term isotopic evolution of Sr and Os, which are well mixed in the ocean and have thus not been influenced by circulation changes. The radiogenic isotope evolution of those trace metals with intermediate oceanic residence times can be used as paleoceanographic proxies to reconstruct paleocirculation and weathering inputs into the ocean. This is demonstrated by studies from different ocean basins, mainly carried out on ferromanganese crusts, which show that radiogenic trace metal isotopes provide important new insights and can complement results obtained by other well-established paleoceanographic tracers such as carbon isotopes.