SEARCH

SEARCH BY CITATION

References

  • Fang, J., Time domain finite difference computation for Maxwell's equations, Ph.D. Dissertation,Univ. of Calif.,Berkeley,1989.
  • Fyfe, D. J., Economical evaluation of Runge-Kutta formulae, Math. Comput., 20, 392398, 1966.
  • Gaitonde, D., J. S. Shang, High-order finite-volume schemes in wave propagation phenomena27th AIAA Plasmadynamics and Lasers ConferenceAm. Inst. of Aeronaut. and Astonaut.New Orleans, La.June, 1996.
  • Gaitonde, D., J. S. Shang, J. L. Young, Practical aspects of high-order numerical schemes for wave propagation phenomena, Int. J. Numer. Methods Eng., 18491869, 1999.
  • Gandhi, O. P., C. M. Furse, Currents induced in the human body for exposure to ultrawideband electromagnetic pulses, IEEE Trans. Electromagn. Compat., 392, 174180, 1997.
  • Kunz, K. S., R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, CRC Press, Boca Raton, Fla., 1993.
  • Nystrom, J. F., J. L. Young, k-space transfer function design of discrete operators: Application to Maxwell's equations, J. Electromagn. Waves Appl., 13, 781806, 1999.
  • Press, W. H., B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes, Cambridge Univ. Press, New York, 1986.
  • Richtmyer, R., K. Morton, Difference Methods for Initial-Value Problems, John Wiley, New York, 1967.
  • Shlager, K. L., J. B. Schneider, A selective survey of the finite difference time domain literature, IEEE Antennas Propag. Mag., 374, 3956, 1995.
  • Shlager, K. L., J. G. Maloney, S. L. Ray, A. F. Peterson, Relative accuracy of several finite difference time domain methods in two and three-dimensions, IEEE Trans. Antennas Propag., 4112, 17321737, 1993.
  • Taflove, A., M. E. Brodwin, Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations, IEEE Trans. Microwave Theory Tech., 238, 623630, 1975.
  • Taflove, A., K. Umashankar, Radar cross section of general three-dimensional scatterers, IEEE Trans. Electromagn. Compat., 254, 433440, 1983.
  • Tuomela, J., Fourth-order schemes for the wave equation, Maxwell's equations, and linearized elastodynamic equations, Numerical Methods for Partial Differential Equations, 10, 2263, John Wiley, New York, 1994.
  • Turkel, E., High-order methods, Advances in Computational ElectrodynamicsA. Taflove, 63110, Artech House, Norwood, Mass., 1998.
  • Williamson, J. H., Low-storage Runge-Kutta schemes, J. Comput. Phys., 35, 4856, 1980.
  • Yee, K. S., Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Trans. Antennas Propag., 143, 302307, 1966.
  • Young, J. L., A full finite difference time domain implementation for radio wave propagation in a plasma, Radio Sci., 296, 15131522, 1994.
  • Young, J. L., D. Gaitonde, J. S. Shang, Towards the construction of a fourth-order difference scheme for transient wave simulation: Staggered grid approach, IEEE Trans. Antennas Propag., 4511, 15731580, 1997.