SEARCH

SEARCH BY CITATION

References

  • Abramowitz, M., and I. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, U.S. Dep. of Commer., Washington, D. C., June 1964.
  • Ahluwalia, D. S., R. M. Lewis, and J. Boersma, Uniform asymptotic theory of diffraction by a plane screen, SIAM J. Appl. Math., 16(4), 783807, 1968.
  • Ansorge, H., Electromagnetic reflection from a curved dielectric interface, IEEE Trans. Antennas Propag., 34, 842845, 1986.
  • Ansorge, H., First order corrections to reflection and transmission at a curved dielectric interface with emphasis on polarization properties, Radio Sci., 22, 993998, 1987.
  • Benamou, J. D., Direct computations of multivalued phase space solutions for Hamilton-Jacobi equations, Commun. Pure Appl. Math., 52, 14431475, 1999.
  • Bleistein, N. and R. A. Handelsman, Asymptotic Expansions of Integrals, Dover, Mineola, N. Y., 1986.
  • Bloom, C. O. and N. D. Kazarinoff, Short Wave Radiation Problems in Inhomogeneous Media: Asymptotic Solutions, Lect. Notes Math., vol. 522, Springer-Verlag, New York, 1976.
  • Bouche, D., F. Molinet and R. Mittra, Asymptotic Methods in Electromagnetics, Springer-Verlag, New York, 1997.
  • Brown, W. P., On the asymptotic behavior of electromagnetic fields from convex cylinders near grazing incidence, J. Math. Anal. Appl., 15, 355385, 1966.
  • Bruno, O., and F. Reitich, Numerical solution of diffraction problems: A method of variation of boundaries I, J. Opt. Soc. Am. A Opt. Image Sci., 10, 11681175, 1993a.
  • Bruno, O., and F. Reitich, Numerical solution of diffraction problems: A method of variation of boundaries II, J. Opt. Soc. Am. A Opt. Image Sci., 10, 23072316, 1993b.
  • Bruno, O., and F. Reitich, Numerical solution of diffraction problems: A method of variation of boundaries III, J. Opt. Soc. Am. A Opt. Image Sci., 10, 25512562, 1993c.
  • Bruno, O., A. Sei and M. Caponi, Rigorous multi-scale solver for rough-surface scattering problems: High-order-high-frequency and variation of boundaries, paper presented at NATO Sensors and Electronics Technology (SET) Symposium on “Low Grazing Angle Clutter: Its Characterization, Measurement, and Application,”Appl. Phys. Lab., Johns Hopkins Univ., Laurel, Md., 25–27 April 2000.
  • Cartan, H., Elementary Theory of Analytic Functions of One or Several Complex Variables, Addison-Wesley-Longman, Reading, Mass., 1963.
  • Chaloupka, H., and H. J. Meckelburg, Improved high-frequency current approximation for curved conducting surfaces, Arch. Elektron. Übertragungstech., 39, 245250, 1985.
  • Duistermaat, J. J., Huygens' principle for linear partial differential equations, in Huygens' Principle, 1690–1990: Theory and Applications, edited by H. Blok, pp. 273297, Elsevier Sci., New York, 1992.
  • Fatemi, E., B. Engquist, and S. Osher, Numerical solution of the high frequency asymptotic expansion for the scalar wave equation, J. Comput. Phys., 120, 145155, 1995.
  • Friedlander, F. G., Geometrical optics and Maxwell's equations, Proc. Cambridge Philos. Soc., 43(2), 284286, 1946.
  • Friedlander, F. G., and J. B. Keller, Asymptotic expansion of solutions of (∇2 + k2)u = 0, Commun. Pure Appl. Math., 8, 387394, 1955.
  • Gil'Man, M. A., A. G. Mikheyev, and T. L. Tkachenko, The two-scale model and other methods for the approximate solution of the problem of diffraction by rough surfaces, USSR Comput. Math. Math. Phys., Engl. Transl., 36, 14291442, 1996.
  • Hong, S., Asymptotic theory of electromagnetic and acoustic diffraction by smooth convex surfaces of variable curvature, J. Math. Phys., 8, 12231232, 1967.
  • Hutley, M. C., Diffraction Gratings, Academic, San Diego, Calif., 1982.
  • Keller, J. B., A geometric theory of diffraction, in Calculus of Variations and Its Applications, edited by L. M. Graves, pp. 2752, McGraw-Hill, New York, 1958.
  • Kinsman, B., Wind Waves, Their Generation and Propagation on the Ocean Surface, Prentice-Hall, Old Tappan, N. J., 1965.
  • Kravtsov, Y. A., A modification of the geometric optics method, Radiofizika, 7, 664673, 1964.
  • Kuryanov, B. F., The scattering of sound at a rough surface with two types of irregularity, Sov. Phys. Acoust., Engl. Transl., 8(3), 252257, 1963.
  • Lee, S. W., Electromagnetic reflection from a conducting surface: Geometrical optics solution, IEEE Trans. Antennas Propag., 23, 184191, 1975.
  • Lewis, R. M., and J. Boersma, Uniform theory of edge diffraction, J. Math. Phys., 10, 22912305, 1969.
  • Lewis, R. M., and J. B. Keller, Asymptotic methods for partial differential equations: The reduced wave equation and Maxwell's equations, Res. Rep. EM-194, N. Y. Univ., New York, 1964. (Reprinted in Surv. Appl. Math., 1, 1–82, 1995).
  • Lewis, R. M., N. Bleistein, and D. Ludwig, Uniform asymptotic theory of creeping waves, Commun. Pure Appl. Math., 20, 295320, 1967.
  • Ludwig, D., Uniform asymptotic expansion at a caustic, Commun. Pure Appl. Math., 19, 215250, 1966.
  • Luneburg, R. K., Mathematical Theory of Optics, Brown Univ., Providence, R. I., 1944. (Reprinted by Univ. of Calif. Press, Berkeley, 1964.).
  • Luneburg, R. K., Asymptotic expansion of steady state electromagnetic fields, Res. Rep. EM-14, N. Y. Univ., New York, July 1949a.
  • Luneburg, R. K., Asymptotic evaluation of diffraction integrals, Res. Rep. EM-15, N. Y. Univ., New York, Oct. 1949b.
  • McDaniel, S. T., and A. D. Gorman, An examination of the composite-roughness scattering model, J. Acoust. Soc. Am., 73, 14761486, 1983.
  • Miranker, W. L., Parametric theory of Δu + k2u, Arch. Ration. Mech. Anal., 1, 139152, 1957.
  • Mitzner, K. M., Effect of small irregularities on electromagnetic scattering from an interface of arbitrary shape, J. Math. Phys., 5, 17761786, 1964.
  • Petit, R., Ed., Electromagnetic Theory of Gratings, Springer-Verlag, New York, 1980.
  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, Cambridge Univ. Press, New York, 1992.
  • Rice, S. O., Reflection of electromagnetic waves from slightly rough surfaces, Commun. Pure Appl. Math., 4, 351378, 1951.
  • Sei, A., O. P. Bruno, and M. Caponi, Study of polarization scattering anomalies with application to oceanic scattering, Radio Sci., 34, 385411, 1999.
  • Shmelev, A. B., Wave scattering by statistically uneven surfaces, Sov. Phys. Usp., Engl. Transl., 15(2), 173183, 1972.
  • Valenzuela, G. R., Theories for the interaction of electromagnetic and oceanic waves: A review, Boundary Layer Meteorol., 13, 6185, 1978.
  • Van Kampen, N. G., An asymptotic treatment of diffraction problems, Physica, 14(9), 575589, 1949.
  • VanTrier, J., and W. W. Symes, Upwind finite- difference calculation of traveltimes, Geophysics, 56, 812821, 1991.
  • Vidale, J., Finite difference calculation of traveltimes, Bull. Seismol. Soc. Am., 78, 20622076, 1988.
  • Voronovich, A. G., Wave Scattering From Rough Surfaces, Springer-Verlag, New York, 1994.