SEARCH

SEARCH BY CITATION

References

  • Backus, G. E., Bayesian inference in geomagnetism, Geophys. J., 92, 125142, 1988.
  • Bretthorst, G. L., Bayesian Spectrum Analysis and Parameter Estimation, Lect. Notes Stat., 48J. Berger, et al., 209, Springer-Verlag, New York, 1988.
  • Bryson, A. E., Y. Ho, Applied Optimal Control, 377382, Taylor and Francis, Philadelphia, Pa., 1969.
  • Carrera, J., S. P. Neuman, Estimation of aquifer parameters under transient and steady state conditions, 1, Maximum likelihood method incorporating prior information, Water Resour. Res., 222, 199210, 1986.
  • Dagan, G., Stochastic models of groundwater flow by unconditional and conditional probabilities: The inverse problem, Water Resour. Res., 211, 6572, 1985.
  • Dagan, G., Statistical theory of groundwater flow and transport: Pore to laboratory, laboratory to formation, and formation to regional scale, Water Resour. Res., 229, 120S134S, 1986.
  • Gelhar, L. W., Stochastic subsurface hydrology from theory to applications, Water Resour. Res., 229, 135S145S, 1986.
  • Ginn, T. R., J. H. Cushman, Inverse methods for subsurface flow-A critical review of stochastic techniques, Stochastic Hydrol. Hydraul., 4, 126, 1990.
  • Hachich, W., E. H. Vanmacke, Probabilistic updating of pore pressure fields, J. Geotech. Eng., 109, 373385, 1983.
  • Hoeksema, R. J., P. K. Kitanidis, An application of the geostatistical approach to the inverse problem in two-dimensional ground-water modeling, Water Resour. Res., 207, 10031020, 1984.
  • Hoeksema, R. J., P. K. Kitanidis, Comparison of Gaussian conditional mean and kriging estimation in the geostatistical solution to the inverse problem, Water Resour. Res., 216, 825836, 1985.
  • Jaynes, E. T., The well-posed problem, Found. Phys., 34, 477492, 1973.
  • Jaynes, E. T., Papers on Probability, Statistics and Statistical Physics, D. Redel, Norwell, Mass., 1983.
  • Jeffreys, H., The Theory Of Probability, Clarendon, Oxford, England, 1939.
  • Jowitt, P. W., Bayesian estimates of material properties from limited test data, Eng. Struct., 1, 170178, 1979.
  • Kapur, J. N., Maximum Entropy Models In Science and Engineering, 635, John Wiley, New York, 1989.
  • Kitanidis, P. K., Parameter uncertainty in estimation of spatial functions: Bayesian analysis, Water Resour. Res., 224, 499507, 1986.
  • Kitanidis, P. K., Recent advances in geostatistical inference on hydrogeological variables, U.S. Natl. Rep. Int. Union Geod. Geophys. 1991–1994, Rev. Geophys., 332, 11031109, 1995.
  • Kitanidis, P. K., On the geostatistical approach to the inverse problem, Adv. Water Resour., 196, 333342, 1996.
  • Kitanidis, P. K., Comment on “A reassessment of the groundwater inverse problem” by D. McLaughlin and L. R. Townley, Water Resour. Res., 339, 21992202, 1997.
  • Kitanidis, P. K., E. G. Vomvoris, A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one-dimensional simulations, Water Resour. Res., 193, 677690, 1983.
  • Loredo, T. J., From Laplace to supernova SN 1987A: Bayesian inference, Maximum Entropy And Bayesian MethodsP. F. Fougere, 81142, Kluwer Acad., Norwell, Mass., 1990.
  • Massmann, J., R. A. Freeze, Groundwater contamination from waste management sites: The interaction between risk-based engineering design and regulatory policy, 1, Methodology, Water Resour. Res., 232, 351367, 1987.
  • Massmann, J., R. A. Freeze, Updating hydraulic conductivity fields: A two-step procedure, Water Resour. Res., 257, 17631765, 1989.
  • Maybeck, P. S., Stochastic Models, Estimation and Control, 1, 115407, Academic, San Diego, Calif., 1979.
  • McLaughlin, D., L. R. Townley, A reassessment of the ground-water inverse problem, Water Resour. Res., 325, 11311161, 1996.
  • McLaughlin, D., L. R. Townley, Reply, Water Resour. Res., 339, 22032204, 1997.
  • Menke, W., Geophysical Data Analysis: Discrete Inverse Theory, 260, Academic, San Diego, Calif., 1984.
  • Mohammad-Djafari, A., A full Bayesian approach for inverse problems, Maximum Entropy And Bayesian MethodsK. M. Hanson, R. N. Silver, 135144, Kluwer Acad., Norwell, Mass., 1996.
  • Oldenburg, D. W., An introduction to linear inverse theory, IEEE Trans. Geosci. Remote Sens., GE-226, 665674, 1984.
  • Peck, A., S. M. Gorelick, G. deMarsily, S. Foster, V. Kovalevsky, Consequences of spatial variability in aquifer properties and data limitations for groundwater modeling practice, Publ., 175, 272, Int. Assoc. of Hydrol. Sci., Arvada, Colo., 1988.
  • Press, S. J., Bayesian Statistics: Principles, Models and Applications, 237, John Wiley, New York, 1989.
  • Press, W. H., B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing2, 963, Cambridge Univ. Press, New York, 1992.
  • Rehfedt, K. R., Prediction of macro-dispersivity in heterogeneous aquifers, Ph.D. thesis,, 233 pp.,Mass. Inst. of Technol.,Cambridge,1988.
  • Rubin, Y., G. Dagan, Conditional estimation of solute travel time in heterogeneous formations: Impact of transmissivity measurements, Water Resour. Res., 284, 10331040, 1992.
  • Schreider, Y. A., The Monte Carlo Method, 381, Pergamon, Tarry-town, N. Y., 1966.
  • Schweppe, F. C., Uncertain Dynamic Systems, 563, Prentice-Hall, Englewood Cliffs, N. J., 1973.
  • Sivia, D. S., Data Analysis: A Bayesian Tutorial, 189, Oxford Univ. Press, New York, 1998.
  • Tarantola, A., Inverse Problem Theory, 613, Elsevier Sci., New York, 1987.
  • Willis, R., W. W.-G. Yeh, Groundwater Systems Planning and Management, 416, Prentice-Hall, Englewood Cliffs, N. J., 1987.
  • Woodbury, A. D., Inverse theory and model identifiability, An overview, CSCE Centennial Symposium on Management of Waste Contamination of GroundwaterR. Young, 119144Can. Soc. of Civ. Eng., Montreal, Que., Canada, 1987.
  • Woodbury, A. D., Bayesian updating revisited, Math. Geol., 213, 285308, 1989.
  • Woodbury, A. D., A probabilistic fracture transport model: Application to contaminant transport in a fractured clay deposit, Can. Geotech. J., 34, 784798, 1997.
  • Woodbury, A. D., Y. Rubin, A full-Bayesian approach to parameter inference from tracer travel time moments and investigation of scale effects at the Cape Cod experimental site, Water Resour. Res., 361, 159171, 2000.
  • Woodbury, A. D., E. A. Sudicky, The geostatistical characteristics of the Borden aquifer, Water Resour. Res., 274, 533546, 1991.
  • Woodbury, A. D., E. A. Sudicky, Inversion of the Borden tracer experiment data: Investigation of stochastic moment models, Water Resour. Res., 289, 23872398, 1992.
  • Woodbury, A. D., T. J. Ulrych, Minimum relative entropy: Forward probabilistic modeling, Water Resour. Res., 298, 28472860, 1993.
  • Woodbury, A. D., T. J. Ulrych, Minimum relative entropy and probabilistic inversion in groundwater hydrology, Stochastic Hydrol. Hydraul., 12, 317358, 1998.
  • Woodbury, A. D., F. W. Render, T. J. Ulrych, Practical probabilistic groundwater modeling, Ground Water, 334, 532538, 1995.
  • Yeh, T.-C. J., M. Jin, S. Hanna, An iterative stochastic inverse method: Conditional effective transmissivity and hydraulic head fields, Water Resour. Res., 321, 8592, 1996.
  • Zhang, J., T.-C. J. Yeh, An iterative geostatistical inverse method for steady flow in the vadose zone, Water Resour. Res., 331, 6371, 1997.