SEARCH

SEARCH BY CITATION

References

  • Abulaban, A., J. L. Nieber, D. Misra, Modeling plume behavior for nonlinearly sorbing solutes in saturated homogeneous porous media, Adv. Water Resour., 216, 487498, 1998.
  • Ahlstrom, S. W., H. P. Foote, Transport modeling in the environment using the discrete-parcel-random-walk approachEPA conference on Environmental Modeling and SimulationEnviron. Protect. AgencyCincinnati, Ohio, 1976.
  • Andricevic, R., E. Foufoula-Georgiou, A particle tracking method of kinetically adsorbing solutes in heterogeneous porous media, Proceedings of the 8th International Conference on Computational Methods in Water Resources, Venice, Italy, Computational Methods in Subsurface Hydrology, 429435Springer-Verlag, New York, 1990.
  • Andricevic, R., E. Foufoula-Georgiou, Modeling kinetic non-equilibrium using the first two moments of the residence time distribution, Stochastic Hydrol. Hydraul., 5, 155171, 1991.
  • Aris, R., On the dispersion of a solute in a fluid flowing through a tube, Proc. R. Soc. London, Ser. A, 235, 6777, 1956.
  • Bellin, A., A. J. Valocchi, A. Rinaldo, Double peak formation in reactive solute transport in one-dimensional heterogeneous porous media, Quad. Dipart. IDR, 1, 135, Dip di Ing. Civ. et Ambientale, Univ. degli Stud. di Trento, Trento, Italy, 1991.
  • Bracewell, R. N., The Fourier Transform and Its Applications, McGraw-Hill, New York, 1986.
  • Brusseau, M. L., P. S. C. Rao, Sorption nonideality during organic contaminant transport in porous media, Crit. Rev. Environ. Control, 191, 3399, 1989.
  • Delay, F., H. Housset-Resche, G. Porel, G. deMarsily, Transport in a 2-D saturated porous medium: A new method for particle tracking, Math. Geol., 281, 4571, 1996.
  • Forsythe, G. E., M. A. Malcolm, C. B. Moler, Computer Methods for Mathematical Computations, Prentice-Hall, Englewood Cliffs, N. J., 1977.
  • Freyberg, D. L., A natural gradient experiment on solute transport in a sand aquifer, 2, Spatial moments and the advection and dispersion of nonreactive tracers, Water Resour. Res., 2213, 20312046, 1986.
  • Garabedian, S. P., L. W. Gelhar, M. A. Celia, Large-scale dispersive transport in aquifers: Field experiments and reactive transport theory, report, 290Ralph M. Parsons Lab., Dep. of Civ. Eng., Mass. Inst. of Technol., Cambridge, 1988.
  • Goltz, M. N., Three-dimensional analytical modeling of diffusion-limited solute transport, Ph.D. thesis,Stanford Univ.,Stanford, Calif.,1986.
  • Goltz, M. N., P. V. Roberts, Using the method of moments to analyze three-dimensional diffusion-limited solute transport from temporal and spatial perspectives, Water Resour. Res., 238, 15751585, 1987.
  • Haggerty, R., S. M. Gorelick, Multiple-rate mass transfer for modeling diffusion and surface reactions in media with pore-scale heterogeneity, Water Resour. Res., 3110, 23832400, 1995.
  • Keller, R. A., J. C. Giddings, Multiple zones and spots in chromatography, J. Chromatogr., 3, 205220, 1960.
  • Kinzelbach, W., The random-walk-method in pollutant transport simulation, Advances in Analytical and Numerical Groundwater Flow and Quality ModellingE. Custodio, et al., 227246, D. Reidel, Norwell, Mass., 1987.
  • Kinzelbach, W., G. Uffink, The random walk method and extensions in groundwater modelling, Transport Processes in Porous MediaJ. Bear, M. Y. Corapcioglu, 761787, Kluwer Acad., Norwell, Mass., 1991.
  • Kitanidis, P. K., Particle-tracking equations for the solution of the advection-dispersion equation with variable coefficients, Water Resour. Res., 3011, 32253227, 1994.
  • LeBlanc, D. R., S. P. Garabedian, K. M. Hess, L. W. Gelhar, R. D. Quadri, K. G. Stollenwerk, W. W. Wood, Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts, 1, Experimental design and observed tracer movement, Water Resour. Res., 275, 895910, 1991.
  • Mackay, D. M., D. L. Freyberg, P. V. Roberts, J. A. Cherry, A natural gradient experiment on solute transport in a sand aquifer, 1, Approach and overview of plume movement, Water Resour. Res., 2213, 20172029, 1986.
  • Mishra, A. K., A. Gutjahr, H. Rajaram, Transport with spatially variable kinetic sorption: Recursion formulation, Adv. Water Resour., 225, 549555, 1999.
  • Nkedi-Kizza, P., J. W. Biggar, H. M. Selim, M. T. vanGenuchten, P. J. Wierenga, J. M. Davidson, D. R. Nielsen, On the equivalence of two conceptual models for describing ion exchange during transport through an aggregated Oxisol, Water Resour. Res., 208, 11231130, 1984.
  • Parker, J. C., A. J. Valocchi, Constraints on the validity of equilibrium and first-order kinetic transport models in structured soils, Water Resour. Res., 223, 399407, 1986.
  • Parzen, E., Stochastic Processes, Holden-Day, Merrifield, Va., 1962.
  • Prickett, T. A., T. Naymik, C. Lonnquist, A “random walk” solute transport model for selected groundwater quality evaluations, Bull. Ill. State Water Surv., 65, 103S, 1981.
  • Quinodoz, H. A. M., A. J. Valocchi, Stochastic analysis of the transport of kinetically sorbing solutes in aquifers with randomly heterogeneous hydraulic conductivity, Water Resour. Res., 299, 32273240, 1993.
  • Roberts, P. V., M. N. Goltz, D. M. Mackay, A natural gradient experiment on solute transport in a sand aquifer, 3, Retardation estimates and mass balances for organic solutes, Water Resour. Res., 2213, 20472058, 1986.
  • Sardin, M., D. Schweich, F. J. Leij, M. T. vanGenuchten, Modeling the nonequilibrium transport of linearly interacting solutes in porous media: A review, Water Resour. Res., 279, 22872307, 1991.
  • Selroos, J.-O., V. Cvetkovic, Modeling solute advection coupled with sorption kinetics in heterogeneous formations, Water Resour. Res., 285, 12711278, 1992.
  • Simmons, C. S., A stochastic-convective transport representation of dispersion in one-dimensional porous media systems, Water Resour. Res., 184, 11931214, 1982.
  • Tompson, A. F. B., Numerical simulation of chemical migration in physically and chemically heterogeneous media, Water Resour. Res., 2911, 37093726, 1993.
  • Valocchi, A. J., Use of temporal moment analysis to study reactive solute transport in aggregated porous media, Geoderma, 46, 233247, 1990.
  • Valocchi, A. J., H. A. M. Quinodoz, Application of the random walk method to simulate the transport of kinetically adsorbing solutesGroundwater Contamination Symposium of the Third IAHS Scientific AssemblyInt. Assoc. of Hydrol. Sci.Baltimore, Md., 1989.
  • vanGenuchten, M. T., A general approach for modeling solute transport in structured soils, Mem. Int. Assoc. Hydrogeol., 17, 513526, 1985.