SEARCH

SEARCH BY CITATION

References

  • Andersson, J., B. Dverstorp, Conditional simulations of fluid flow in three-dimensional networks of discrete fractures, Water Resour. Res., 2310, 18761886, 1987.
  • Birgersson, L., H. Widén, T. Ågren, I. Neretnieks, Tracer migration experiments in the Stripa Mine 1980–1991Stripa Proj. Rep. 92-25SKB, Stockholm, 1992.
  • Birkholzer, J., C. F. Tsang, Solute channeling in unsaturated heterogeneous porous media, Water Resour. Res., 3310, 22212238, 1997.
  • Birkholzer, J., G. Li, C.-F. Tsang, Y. Tsang, Modeling studies and analysis of seepage into drifts at Yucca Mountain, J. Contam. Hydrol., 381–3, 349384, 1999.
  • Cacas, M. C., E. Ledoux, G. deMarsily, B. Tillie, A. Barbreau, E. Durant, B. Feuga, P. Peaudecerf, Modeling fracture flow with a stochastic discrete fracture network: Calibration and validation, 1, The flow model, Water Resour. Res., 263, 479489, 1990a.
  • Cacas, M. C., E. Ledoux, G. deMarsily, A. Barbreau, P. Calmels, B. Gaillard, R. Margritta, Modeling fracture flow with a stochastic discrete fracture network: Calibration and validation, 2, The transport model, Water Resour. Res., 263, 491500, 1990b.
  • Carrera, J., S. P. Neuman, Estimation of aquifer parameters under transient and steady state conditions, 1, Maximum likelihood method incorporating prior information, Water Resour. Res., 222, 199210, 1986.
  • Deutsch, C. V., A. G. Journel, GSLIB: Geostatistical Software Library and User's Guide, Oxford Univ. Press, New York, 1992.
  • Dverstorp, B., J. Andersson, Application of the discrete fracture network concept with field data: Possibilities of model calibration and validation, Water Resour. Res., 253, 540550, 1989.
  • Fabryka-Martin, J. T., A. V. Wolfsberg, P. R. Dixon, S. Levy, J. Musgrave, H. J. Turin, Summary report of chlorine-36 studies: Sampling, analysis and simulation of chlorine-36 in the Exploratory Studies FacilityRep. LA-CST-TIP-96-002Los Alamos Natl. Lab., Los Alamos, N. M., 1996.
  • Finsterle, S., iTOUGH2 user's guideRep. LBNL-40040Lawrence Berkeley Natl. Lab., Berkeley, Calif., 1999.
  • Frind, E. O., R. W. Gillham, J. F. Pickens, Application of unsaturated flow properties in the design of geologic environments for radioactive waste storage facilities, Finite Elements in Water ResourcesW. G. Gray, G. F. Pinder, C. A. Brebbia, 3.1333.163, Pentech, London, 1977.
  • Gill, P. E., W. Murray, M. H. Wright, Practical Optimization, Academic, San Diego, Calif., 1981.
  • , OECD/NEA International Stripa Project Overview, Natural Barriers, 2P. Gnirk, SKB, Stockholm, 1993.
  • Ho, C. K., S. W. Webb, Capillary barrier performance in heterogeneous porous media, Water Resour. Res., 344, 603609, 1998.
  • Jackson, C. P., A. R. Hoch, S. Todman, Self-consistency of a heterogeneous continuum porous medium representation of a fractured medium, Water Resour. Res., 361, 189202, 2000.
  • Karasaki, K., S. Segan, K. Pruess, S. Vomvoris, A study of two phase flow in fracture networks, Proceedings of the Fifth Annual International High-Level Radioactive Waste Management Conference Las Vegas, Nevada, 4, 26332668, Am. Nucl. Soc., La Grange Park, Ill., 1994.
  • Kitterød, N.-O., L. Gottschalk, Simulation of normal distributed smooth fields by Karhunen-Loeve expansion in combination with kriging, Stochastic Hydrol. Hydraul., 11, 459482, 1997.
  • LeCain, G. D., Pneumatic testing in 45-degree-inclined boreholes in ash-flow tuff near Superior, Arizona, U.S. Geol. Surv. Water Resour. Invest. Rep95-4073, 1995.
  • Leverett, M. C., Capillary behavior in porous solids, Trans. Soc. Pet. Eng., 142, 152169, 1941.
  • Long, J. C. S., D. M. Billaux, From field data to fracture network modeling: An example incorporating spatial structure, Water Resour. Res., 237, 12011216, 1987.
  • Long, J. C. S., J. S. Remer, C. R. Wilson, P. A. Witherspoon, Porous media equivalents for networks of discontinuous fractures, Water Resour. Res., 183, 645658, 1982.
  • Narasimhan, T. N., Numerical simulation of Richards equation: Current approaches and an alternative perspective, Unsaturated Flow in Hydrologic Modeling, Theory and PracticeH. J. Morel-Seytoux, 325341, Kluwer Acad., Norwell, Mass., 1989.
  • Neuman, S. P., Stochastic continuum representation of fractured rock permeability as an alternative to the REV and fracture network concepts, Groundwater Flow and Quality Modelling, NATO ASI Ser., Ser. C, 224E. Custodio, A. Gurgui, J. P. Lobo Ferreira, 331362, D. Reidel, Norwell, Mass., 1988.
  • Nordqvist, A. W., Y. W. Tsang, C. F. Tsang, B. Dverstorp, J. Andersson, A variable aperture fracture network model for flow and transport in fractured rock, Water Resour. Res., 286, 17031713, 1992.
  • Oldenburg, C. M., K. Pruess, On numerical modeling of capillary barriers, Water Resour. Res., 294, 10451056, 1993.
  • Oreskes, N., K. Shrader-Frechette, K. Belitz, Verification, validation, and confirmation of numerical models in the Earth sciences, Science, 264, 641646, 1994.
  • Philip, J. R., Some general results on the seepage exclusion problem, Water Resour. Res., 263, 369377, 1990.
  • Pruess, K., TOUGH2: A general-purpose numerical simulator for multiphase fluid and heat flowRep. LBNL-29400Lawrence Berkeley Natl. Lab., Berkeley, Calif., 1991a.
  • Pruess, K., Grid orientation and capillary pressure effects in the simulation of water injection into depleted vapor zones, Geothermics, 205, 6, 257277, 1991b.
  • Pruess, K., A mechanistic model for water seepage through thick unsaturated zones in fractured rocks of low matrix permeability, Water Resour. Res., 354, 10391051, 1999.
  • Pruess, K., B. Faybishenko, G. S. Bodvarsson, Alternative concepts and approaches for modeling flow and transport in thick unsaturated zones of fractured rocks, J. Contam. Hydrol., 381–3, 281322, 1999.
  • Richards, L. H., Capillary conduction of liquids through porous mediums, Physics, 1, 318333, 1931.
  • Sahimi, M., Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches, VCH, New York, 1995.
  • Tsang, Y. W., C. F. Tsang, Channel model of flow through fractured media, Water Resour. Res., 233, 467479, 1987.
  • vanGenuchten, M. T., A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892898, 1980.
  • Wang, J. S. Y., Variations of hydrological parameters of tuff and soil, Proceedings of the Third Annual International High-Level Radioactive Waste Management Conference, Las Vegas, Nevada, 1, 727731, Am. Nucl. Soc., La Grange Park, Ill., 1992.
  • Wang, J. S. Y., D. Elsworth, Permeability changes induced by excavation in fractured tuff, Proceedings of the 37th U.S. Rock Mechanics Symposium, Rock Mechanics for Industry, 2, 751757, Am. Rock Mech. Assoc., Alexandria, Va., 1999.
  • Wang, J. S. Y., R. C. Trautz, P. J. Cook, S. Finsterle, A. L. James, J. Birkholzer, Field tests and model analyses of seepage into drift, J. Contam. Hydrol., 381–3, 323347, 1999.
  • Wilson, M. L., et al., Yucca Mountain Site Characterization Project, Total System Performance Assessment for Yucca Mountain: SNL second iteration (TSPA-1993)Rep. SAND-93-2675Sandia Natl. Lab., Albuquerque, N. M., 1994.