SEARCH

SEARCH BY CITATION

References

  • Ahlfeld, D. P., J. M. Mulvey, G. F. Pinder, Contaminated ground-water remediation design using simulation, optimization, and sensitivity theory, 1, Model development, Water Resour. Res., 243, 431441, 1988.
  • Bagtzoglou, A. C., D. E. Dougherty, A. F. B. Thompson, Application of particle methods to reliable identification of groundwater pollution sources, Water Resour. Manage., 6, 1523, 1992.
  • Bear, J., Dynamics of Fluids in Porous Media, Am. Elsevier, New York, 1972.
  • Chin, D. A., P. V. K. Chittaluru, Risk management in wellhead protection, J. Water Resour. Plan. Manage., 1203, 294315, 1994.
  • Dagan, G., Stochastic modeling of groundwater flow by unconditional and conditional probabilities, 2, The solute transport, Water Resour. Res., 184, 835848, 1982.
  • Dagan, G., Theory of solute transport by groundwater, Annu. Rev. Fluid Mech., 19, 183215, 1987.
  • Dagan, G., Flow and Transport in Porous Formations, Springer-Verlag, New York, 1989.
  • Dagan, G., Transport in heterogeneous porous formations: Spatial moments, ergodicity, and effective dispersion, Water Resour. Res., 266, 12811290, 1990.
  • Dagan, G., V. Nguyen, A comparison of travel time and concentration approaches to modeling transport by groundwater, J. Contam. Hydrol., 4, 7991, 1989.
  • Jury, W. A., Simulation of solute transport using a transfer function model, Water Resour. Res., 182, 363368, 1982.
  • Jury, W. A., K. Roth, Transfer Functions and Solute Movement Through Soil: Theory and Applications, Birkhauser, Boston, Mass., 1990.
  • Jury, W. A., G. Sposito, R. E. White, A transfer function model of solute transport through soil, 1, Fundamental concepts, Water Resour. Res., 222, 243247, 1986.
  • Lu, A. H., F. Schmittroth, W. W.-G. Yeh, Sequential estimation of aquifer parameters, Water Resour. Res., 245, 670682, 1988.
  • Marchuk, G. I., V. I. Agoshkov, V. P. Shutyaev, Adjoint Equations and Perturbation Algorithms in Nonlinear Problems, CRC Press, Boca Raton, Fla., 1996.
  • Naff, R. L., Arrival times and temporal moments of breakthrough curves for an imperfectly stratified aquifer, Water Resour. Res., 281, 5368, 1992.
  • Neuman, S. P., A statistical approach to the inverse problem of aquifer hydrology, 3, Improved solution method and added perspective, Water Resour. Res., 162, 331346, 1980.
  • Neupauer, R. M., J. L. Wilson, Adjoint method for obtaining backward-in-time location and travel time probabilities of a conservative groundwater contaminant, Water Resour. Res., 3511, 33893398, 1999.
  • Parker, J. C., M. T. vanGenuchten, Flux-averaged and volume-averaged concentrations in continuum approaches to solute transport, Water Resour. Res., 207, 866872, 1984.
  • Rubin, Y., G. Dagan, Conditional estimation of solute travel time in heterogeneous formations: Impact of transmissivity measurements, Water Resour. Res., 284, 10331040, 1992.
  • Saaty, T. L., Modern Nonlinear Equations, Dover, New York, 1981.
  • Shapiro, A. M., V. D. Cvetkovic, Stochastic analysis of solute arrival time in heterogeneous porous media, Water Resour. Res., 2410, 17111718, 1988.
  • Sposito, G., D. A. Barry, On the Dagan model of solute transport in groundwater: Foundational aspects, Water Resour. Res., 2310, 18671875, 1987.
  • Sun, N.-Z., Inverse Problems in Groundwater Modeling, Kluwer Acad., Norwell, Mass., 1994.
  • Sun, N.-Z., W. W.-G. Yeh, Identification of parameter structure in groundwater inverse problems, Water Resour. Res., 216, 869883, 1985.
  • Sun, N.-Z., W. W.-G. Yeh, Coupled inverse problems in ground-water modeling, 1, Sensitivity analysis and parameter identification, Water Resour. Res., 2610, 25072525, 1990.
  • Sykes, J. F., J. L. Wilson, R. W. Andrews, Sensitivity analysis for steady state groundwater flow using adjoint operators, Water Resour. Res., 213, 359371, 1985.
  • Townley, L. R., J. L. Wilson, Computationally efficient algorithms for parameter estimation and uncertainty propagation in numerical models of groundwater flow, Water Resour. Res., 2112, 18511860, 1985.
  • Uffink, G. J. M., Application of Kolmogorov's backward equation in random walk simulations of groundwater contaminant transport, Contaminant Transport in GroundwaterH. E. Kobus, W. Kinzelbach, 283289, A. A. Balkema, Brookfield, Vt., 1989.
  • Wilson, J. L., J. Liu, Backward tracking to find the source of pollution, Waste-management: From Risk to RemediationR. Bhada, et al., 181199, ECM Press, Albuquerque, N. M., 1994.
  • Wilson, J. L., J. Liu, Field validation of the backward-in-time advection dispersion theoryProceedings of the 1996 HSRC/WERC Joint Conference on the EnvironmentGreat Plains-Rocky Mountain Hazard. Substance Cent.Manhattan, Kansas, 1997.
  • Wilson, J. L., D. E. Metcalfe, Illustration and verification of adjoint sensitivity theory for steady state groundwater flow, Water Resour. Res., 2111, 16021610, 1985.
  • Yeh, W. W.-G., N.-Z. Sun, Variational sensitivity analysis, data requirements, and parameter identification in a leaky aquifer system, Water Resour. Res., 269, 19271938, 1990.
  • Zauderer, E., Partial Differential Equations of Applied Mathematics2, John Wiley, New York, 1989.
  • Zwillinger, D., Handbook of Differential Equations2, Academic, San Diego, Calif., 1989.