SEARCH

SEARCH BY CITATION

References

  • Archer, D. E., G. Eshel, A. Winguth, W. Broecker, R. Pierrehumbert, M. Tobis, and R. Jacob, Atmospheric pCO2 sensitivity to the biological pump in the ocean, Global Biogeochem. Cycles, 14, 12191230, 2000.
  • Bacastow, R. B., The effect of temperature change of the warm surface waters of the oceans on atmospheric CO2, Global Biogeochem. Cycles, 10, 319333, 1996.
  • Broecker, W. S., T. Takahashi, and T. Takahashi, Sources and flow patterns of deep-ocean waters as deduced from potential temperature, salinity, and initial phosphate concentration, J. Geophys. Res., 90, 69256939, 1985.
  • Broecker, W., J. Lynch-Stieglitz, D. Archer, M. Hoffmann, E. Maier-Reimer, O. Marchal, T. Stocker, and N. Gruber, How strong is the Harvardton-Bear constraint? Global Biogeochem. Cycles, 13, 817821, 1999.
  • Bryan, K., and L. Lewis, A water mass model of the World Ocean, J. Geophys. Res., 84, 25032517, 1979.
  • Department of Energy, DOE handbook of methods for the analysis of the various parameters of the carbon dioxide system in seawater, version 2, edited by A. G. Dickson, and C. Goyet, ORNL/CDIAC-74, Washington, D. C., 1994.
  • Foldvik, A., T. Gammelsrod, and T. Torrensen, Circulation and water masses on the southern Weddell Sea Shelf, in Oceanology of the Antarctic Continental Shelf, Antarctic Res. Ser., vol. 43, edited by S. Jacobs, pp. 520, AGU, Washington, D. C., 1985.
  • Gnanadesikan, A., R. D. Slater, N. Gruber, and J. L. Sarmiento, Oceanic vertical exchange and new production: A comparison between models and observations, Deep Sea Res., Part II, 49, 363401, 2002.
  • Gordon, A. L., Two stable modes of Southern Ocean winter stratification, in Deep Convection and Deep Water Formation in the Oceans, edited by P. C. Chu, and J. C. Gascard, Elsevier Oceanogr. Ser., vol. 57, pp. 1735, Elsevier Sci., New York, 1991.
  • Gruber, N., and J. L. Sarmiento, Large-scale biogeochemical/physical interactions, in The Sea, Biological/Physical Interactions, vol. 12, edited by A. R. Robinson, J. J. McCarthy, and B. J. Rothschild, pp. 337399, John Wiley, New York, 2002.
  • Jacobs, S. S., R. G. Fairbanks, and Y. Horibe, Origin and evolution of water masses near the Antarctic continental margin: Evidence from H218O/H216O ratios in seawater, in Oceanology of the Antarctic Continental Shelf, Antarctic Res. Ser., vol. 43, edited by S. Jacobs, pp. 5985, AGU, Washington, D. C., 1985.
  • Martinson, D. G., and R. A. Ianuzzi, Antarctic ocean-ice interactions: Implications from ocean bulk property distributions in the Weddell gyre, in Antarctic Sea Ice: Physical Processes, Interactions, and Variability, Antarctic Res. Ser., vol. 74, edited by M. O. Jeffries, pp. 243271, AGU, Washington, D. C., 1998.
  • Mauritzen, C., Production of dense overflow waters feeding the North Atlantic across the Greenland-Scotland Ridge, 2, An inverse model, Deep Sea Res., Part I, 43, 807835, 1996.
  • Murnane, R. J., J. L. Sarmiento, and C. LeQuere, Spatial distribution of air-sea CO2 fluxes and the interhemispheric transport of carbon by the oceans, Global Biogeochem. Cycles, 13, 287305, 1999.
  • Orsi, A. H., G. C. Johnson, and J. L. Bullister, Circulation, mixing, and production of Antarctic Bottom Water, Prog. Oceanogr., 43, 55109, 1999.
  • Sarmiento, J. L., and J. R. Toggweiler, A new model for the role of the oceans in determining atmospheric CO2, Nature, 308, 621624, 1984.
  • Sarmiento, J. L., P. Monfray, E. Maier-Reimer, O. Aumont, R. J. Murnane, and J. C. Orr, Sea-air CO2 fluxes and carbon transport: A comparison of three ocean general circulation models, Global Biogeochem. Cycles, 14, 12671281, 2000.
  • Schmitz, W. J., and P. L. Richardson, On the sources of the Florida Current, Deep Sea Res., 38, Suppl., S379S409, 1991.
  • Siegenthaler, U., and T. Wenk, Rapid atmospheric CO2 variations and ocean circulation, Nature, 308, 624626, 1984.
  • Takahashi, T., T. T. Takahashi, and S. C. Sutherland, An assessment of the role of the North Atlantic as a CO2 sink, Philos. Trans. R. Soc. London, Ser. B, 348, 143152, 1995.
  • Toggweiler, J. R., Variation of atmospheric CO2 by ventilation of the ocean's deepest water, Paleoceanography, 14, 571588, 1999.
  • Toggweiler, J. R., and J. L. Sarmiento, Glacial to interglacial changes in atmospheric carbon dioxide: The critical role of ocean surface water in high latitudes, in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophys Monogr. Ser., vol. 32, edited by E. T. Sundquist, and W. S. Broecker, pp. 163184, AGU, Washington, D. C., 1985.
  • Toggweiler, J. R., R. Murnane, S. Carson, A. Gnanadesikan, and J. L. Sarmiento, Representation of the carbon cycle in box models and GCMs, 2, Organic pump, Global Biogeochem. Cycles, doi:10.1029/2001GB001841, in press, 2003.
  • Volk, T., and M. I. Hoffert, Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes, in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophys. Monogr. Ser., vol. 32, edited by E. T. Sundquist, and W. S. Broecker, pp. 99110, AGU, Washington, D. C., 1985.
  • Weiss, R. F., F. A. Van Woy, and P. K. Salemeh, Surface water and atmospheric carbon dioxide and nitrous oxide observations by shipboard automated gas chromatography: Results from expeditions between 1977 and 1990, report, 121 pp., Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn., 1992.
  • Winton, M., R. Hallberg, and A. Gnanadesikan, Simulation of density-driven frictional downslope flow in z-coordinate ocean models, J. Phys. Oceanogr., 28, 21632174, 1998.