SEARCH

SEARCH BY CITATION

References

  • Avery, G. B., R. D. Shannon, J. R. White, C. S. Martens, and M. J. Alperin, Effect of seasonal changes in the pathways of methanogenesis on the 13C values of pore water CH4 in a Michigan peatland, Global Biogeochem. Cycles, 13, 475484, 1999.
  • Brauman, A., M. D. Kane, M. Labat, and J. A. Breznak, Genesis of acetate and methane by gut bacteria of nutritionally diverse termites, Science, 257, 13841387, 1992.
  • Bridgham, S. D., K. Updegraff, and J. Pastor, Carbon, nitrogen and phosphorus mineralization in northern wetlands, Ecology, 79, 15451561, 1998.
  • Chasar, L. S., J. P. Chanton, P. H. Glaser, D. I. Siegel, and J. S. Rivers, Radiocarbon and stable carbon isotopic evidence for transport and transformation of dissolved organic carbon, dissolved inorganic carbon and CH4 in a northern Minnesota peatland, Global Biogeochem. Cycles, 14, 10951108, 2000.
  • Conrad, R., Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments, FEMS Microbiol. Ecol., 28, 193202, 1999.
  • Degraeve, K. G., J. P. Grivet, M. Durand, P. Beaumatin, C. Cordelet, G. Hannequart, and D. Demeyer, Competition between reductive acetogenesis and methanogenesis in the pig large-intestinal flora, J. Appl. Bacteriol., 76, 5561, 1994.
  • Fung, I., J. J. Lerner, E. Matthews, M. Prather, L. P. Steele, and P. J. Fraser, Three-dimensional model synthesis of global methane cycle, J. Geophys. Res., 96, 13,03313,065, 1991.
  • Goodwin, S., and J. G. Zeikus, Ecophysiological adaptations of anaerobic bacteria to low pH: Analysis of anaerobic digestion in acidic bog sediments, Appl. Environ. Microbiol., 53, 5764, 1987.
  • Hines, M. E., K. N. Duddleston, and R. P. Kiene, Carbon flow to acetate and C1 compounds in northern wetlands, Geophys. Res. Lett., 28, 42514254, 2001.
  • Hoehler, T. M., D. B. Albert, M. J. Alperin, and C. S. Martens, Acetogenesis from CO2 in an anoxic marine sediment, Limnol. Oceanogr., 44, 662667, 1999.
  • Hogan, M., and G. F. Tande, Vegetation types and bird use of Anchorage wetlands, in Fish and Wildlife Service, Special Studies, U.S. Fish and Wildlife Serv., Washington, D.C., 1983.
  • Jones, J. G., and B. M. Simon, Interaction of acetogens and methanogens in anaerobic freshwater sediments, Appl. Environ. Microbiol., 49, 944948, 1985.
  • Kiene, R. P., and M. E. Hines, Microbial formation of dimethyl sulfide in anoxic Sphagnum peat, Appl. Environ. Microbiol., 61, 27202726, 1995.
  • King, G. M., M. J. Klug, and D. R. Lovley, Metabolism of acetate, methanol, and methylated amines in intertidal sediments of Lowes Cove, Maine, Appl. Environ. Microbiol., 45, 18481853, 1983.
  • Kusel, K., and H. L. Drake, Acetate synthesis in soil from a Bavarian beech forest, Appl. Environ. Microbiol., 60, 13701373, 1994.
  • Lansdown, J. M., P. D. Quay, and S. L. King, CH4 production via CO2 reduction in a temperate bog: A source of 13C-depleted CH4, Geochim. Cosmochim. Acta, 56, 34933503, 1992.
  • Lovley, D. R., and M. J. Klug, Methanogenesis from methanol and methylamines and acetogenesis from hydrogen and carbon dioxide in the sediments of a eutrophic lake, Appl. Environ. Microbiol., 45, 13101315, 1983.
  • Lovley, D. R., and E. J. P. Phillips, Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac River, Appl. Environ. Microbiol., 52, 751757, 1986.
  • Lovley, D. R., D. F. Dwyer, and M. J. Klug, Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments, Appl. Environ. Microbiol., 43, 13731379, 1982.
  • Lovley, D. R., E. J. P. Phillips, and F. Caccavo, Acetate oxidation by dissimilatory Fe(III) reducers, Appl. Environ. Microbiol., 58, 32053206, 1992.
  • Matthews, E., and I. Fung, Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources, Global Biogeochem. Cycles, 1, 6186, 1987.
  • Nozhevnikova, A. N., O. R. Kotsyurbenko, and M. V. Simankova, Acetogenesis at low temperature, in Acetogenesis, edited by H. L. Drake, pp. 416431, Chapman and Hall, New York, 1994.
  • Odom, J. M., and R. Singleton Jr., The Sulfate-Reducing Bacteria: Contemporary Perspectives, 289 pp., Springer-Verlag, New York, 1993.
  • Oechel, W. C., S. J. Hastings, G. Vourtlis, G. Jenkins, M. Reichers, and N. Grunke, Recent change of Arctic ecosystems from a net carbon dioxide sink to source, Nature, 361, 520523, 1993.
  • Olson, J. S., R. M. Garrels, R. A. Berner, T. V. Armentano, M. I. Dyer, and D. H. Yaalon, The natural carbon cycle, in Atmospheric Carbon Dioxide and The Global Carbon Cycle, edited by J. R. Trabalka, pp. 175213, U.S. Dep. of Energy, Washington, D.C., 1985.
  • Oremland, R. S., Biogeochemistry of methanogenic bacteria, in Biology of Anaerobic Microorganisms, edited by A. J. B. Zehnder, pp. 641705, John Wiley, New York, 1988.
  • Ping, C. L., and J. P. Moore, Classification and wetland characteristics of permafrost soils, in Proceedings of the VIII International Soil Correlations Meeting, Classification and Management of Wet Soils, edited by J. M. Kimble, pp. 198205, USDA Soil Conserv. Serv., Lincoln, Nebr., 1992.
  • Popp, T. J., J. P. Chanton, G. J. Whiting, and N. Grant, The methane stable isotope distribution at a Carex dominated fen in Northern Central Alberta, Global Biogeochem. Cycles, 13, 10631077, 1999.
  • Sansone, F. J., and C. S. Martens, Volatile fatty acid cycling in organic-rich marine sediments, Geochim. Cosmochim. Acta, 45, 101121, 1982.
  • Shannon, R. D., and J. R. White, A three-year study of controls on methane emissions from two Michigan peatlands, Biogeochemistry, 27, 3560, 1994.
  • Shannon, R. D., and J. R. White, The effects of spatial and temporal variations in acetate and sulfate on methane cycling in two Michigan peatlands, Limnol. Oceanogr., 41, 435443, 1996.
  • Stookey, L. L., Ferrozine: A new spectrophotometric reagent for iron, Anal. Chem., 42, 779781, 1970.
  • Svensson, B. H., Different temperature optima for methane formation when enrichments from acid peat are supplemented with acetate or hydrogen, Appl. Environ. Microbiol., 48, 389394, 1984.
  • Swanson, S. E., M. L. Harbon, and J. R. Riehle, Use of volcanic glass for ash as a monitoring tool: An example from the 1992 eruptions of Crater Peak, Mount Spurr Volcano, Alaska, in The 1992 Eruptions of Crater Peak Vent, Mount Spurr Volcano, Alaska, edited by T. E. C. Keith, U.S. Geol. Surv. Bull., 2139, 129137, 1995.
  • Vogels, G. D., K. T. Keltjens, and C. van der Drift, Biochemistry of methane production, in Biology of Anaerobic Microorganisms, edited by A. J. B. Zehnder, pp. 707770, John Wiley, New York, 1988.
  • Wu, H. G., M. Green, and M. I. Scranton, Acetate cycling in the water column and surface sediment of Long Island Sound following a bloom, Limnol. Oceanogr., 42, 705713, 1997.
  • Zinder, S. H., and T. Anguish, Carbon monoxide, hydrogen, and formate metabolism during methanogenesis from acetate by thermophilic cultures of Methanosarcina and Methanothrix strains, Appl. Environ. Microbiol., 58, 33233329, 1992.