SEARCH

SEARCH BY CITATION

References

  • Adams, J. M., H. Faure, L. Faure-Denard, J. M. McGlade, and F. I. Woodward, Increases in terrestrial carbon storage from the Last Glacial Maximum to the present, Nature, 348, 711714, 1990.
  • Anderson, L. A., and J. L. Sarmiento, Redfield ratios of remineralization determined by nutrient data analysis, Global Biogeochem. Cycles, 8(1), 6580, 1994.
  • Anderson, R. F., Z. Chase, M. Q. Fleisher, and J. Sachs, The Southern Ocean's biological pump during the Last Glacial Maximum, Deep Sea Res., Part II, 49, 19091938, 2002.
  • Archer, D., A. Winguth, D. Lea, and N. Mahowald, What caused the glacial/interglacial atmospheric pCO2 cycles? Rev. Geophys., 38(2), 159189, 2000a.
  • Archer, D. E., G. Eshel, A. Winguth, W. Broecker, R. Pierrehumbert, M. Tobis, and R. Jacob, Atmospheric pCO2 sensitivity to the biological pump in the ocean, Global Biogeochem. Cycles, 14(4), 12191230, 2000b.
  • Bainbridge, A. E., GEOSECS Atlantic Ocean Expedition, in Hydrographic Data 1972–1973, 121 pp., Natl. Sci. Found., Washington, D. C., 1981.
  • Barnola, J. M., D. Raynaud, Y. S. Korotkevich, and C. Lorius, Vostok ice core provides 160,000-year record of atmospheric CO2, Nature, 329, 408414, 1987.
  • Behrenfeld, M., and P. G. Falkowski, Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnol. Oceanogr., 42(1), 120, 1995.
  • Belkin, I. M., and A. L. Gordon, Southern Ocean fronts from the Greenwich meridian to Tasmania, J. Geophys. Res., 101(C2), 36753696, 1996.
  • Boyd, P. W., et al., A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization, Nature, 407, 695702, 2000.
  • Brewer, P. G., A. L. Bradshaw, and R. T. Williams, Measurements of total carbon dioxide and alkalinity in the North Atlantic Ocean in 1981, in The Global Carbon Cycle: Analysis of the Natural Cycle and Implications of Anthropogenic Alterations for the Next Century, edited by D. Reichle, pp. 358381, Springer Verlag, New York, 1986.
  • Broecker, W. S., Ocean chemistry during glacial time, Geochim. Cosmochim. Acta, 46, 16891705, 1982.
  • Broecker, W. S., Oxygen isotope constraints on surface ocean temperatures, Quat. Res., 26, 121134, 1986.
  • Broecker, W. S., and E. Clark, Glacial-to-Holocene redistribution of carbonate ion in the deep sea, Science, 294, 21522154, 2001.
  • Broecker, W. S., and E. Maier-Reimer, The influence of air and sea exchange on the carbon isotope distribution in the sea, Global Biogeochem. Cycles, 6(3), 315320, 1992.
  • Broecker, W. S., and T.-H. Peng, Tracers in the Sea, Eldigio, Palisades, New York, 1982.
  • Broecker, W. S., and T.-H. Peng, The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change, Global Biogeochem. Cycles, 1(1), 1529, 1987.
  • Broecker, W. S., D. Spencer, and H. Craig, GEOSECS Pacific Ocean Expedition, in Hydrographic Data 1973–1974, 137 pp., Natl. Sci. Found., Washington, D. C., 1982.
  • Broecker, W. S., et al., How much deep water is formed in the Southern Ocean? J. Geophys. Res., 103(C8), 15,83315,843, 1998.
  • Broecker, W., J. Lynch-Stieglitz, D. Archer, M. Hofmann, E. Maier-Reimer, O. Marchal, T. Stocker, and N. Gruber, How strong is the Harvardton-Bear constraint? Global Biogeochem. Cycles, 13(4), 817820, 1999.
  • Broecker, W. S., R. F. Anderson, E. Clark, and M. Fleisher, Record of seafloor CaCO3 dissolution in the central equatorial Pacific, Geochem. Geophys. Geosyst., 2, 10.1029\2000GC000151, 2001.
  • Brzezinski, M. A., The Si:C:N ratio of marine diatoms: Interspecific variability and the effect of some environmental variables, J. Phycol., 21, 347357, 1985.
  • Brzezinski, M. A., D. M. Nelson, V. M. Franck, and D. E. Sigmon, Silicon dynamics within an intense diatom bloom in the Pacific sector of the Southern Ocean, Deep Sea Res., Part II, 48, 39974018, 2001.
  • Brzezinski, M. A., C. J. Pride, D. M. Sigman, J. L. Sarmiento, K. Matsumoto, N. Gruber, G. H. Rau, and K. H. Coale, A switch from Si(OH)4 to NO3 depletion in the glacial Southern Ocean, Geophys. Res. Lett., 29, 10.1029/2001GL014349, in press, 2002.
  • Catubig, N. R., D. E. Archer, R. Francois, P. deMenocal, W. Howard, and E.-F. Yu, Global deep-sea burial rate of calcium carbonate during the Last Glacial Maximum, Paleoceanography, 13(3), 298310, 1998.
  • Chase, Z., R. F. Anderson, M. Q. Fleisher, and P. Kubik, Accumulation of biogenic and lithogenic material in the Pacific sector of the Southern Ocean during the past 30,000 years, paper presented at Ocean Sciences Meeting, AGU, Honolulu, 2002.
  • CLIMAP Project Members, Seasonal reconstructions of the Earth's surface at the Last Glacial Maximum, Map Chart MC-36, Geol. Soc. of Am., Boulder, Colo., 1981.
  • Coale, K. H., et al., A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean, Nature, 383, 495501, 1996.
  • Craig, H., Abyssal carbon and radiocarbon in the Pacific, J. Geophys. Res., 74(23), 54915506, 1969.
  • Crowley, T. J., Ice Age terrestrial carbon changes revisited, Global Biogeochem. Cycles, 9(3), 377390, 1995.
  • De La Rocha, C. L., M. A. Brzezinski, M. J. DeNiro, and A. Shemesh, Silicon-isotope composition of diatoms as an indicator of past oceanic change, Nature, 395, 680683, 1998.
  • Dickson, A. G., and C. Goyet, DOE Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water; version 2, ORNL/CDIAC-74, Dep. of Energy, Washington, D. C., 1994.
  • Ditullio, G. R., and W. O. Smith, Relationship between dimethylsulfide and phytoplankton pigment concentrations in the Ross Sea, Antarctica, Deep Sea Res., Part I, 42, 873892, 1995.
  • Dugdale, R. C., A. G. Wischmeyer, F. P. Wilkerson, R. T. Barber, F. Chai, M. Jiang, and T.-H. Peng, Dependence of equatorial Pacific export production and pCO2 on silica trapping in the Southern Ocean: Implications for paleo-oceanography and paleo-climatology, paper presented at Oceanography Society Biennial Scientific Meeting, Miami Beach, Fla., 2–5 April 2001.
  • Fairbanks, R. G., A 17,000-year glacio-eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation, Nature, 342, 637642, 1989.
  • Farrell, J. W., and W. L. Prell, Climatic change and CaCO3 preservation: An 800,000 year bathymetric reconstruction from the central equatorial Pacific Ocean, Paleoceanography, 4, 447466, 1989.
  • Franck, V. M., M. A. Brzezinski, K. H. Coale, and D. M. Nelson, Iron and silicic acid concentrations regulate Si uptake north and south of the Polar Frontal Zone in the Pacific sector of the Southern Ocean, Deep Sea Res., Part II, 47, 33153338, 2000.
  • Francois, R., M. A. Altabet, E.-F. Yu, D. M. Sigman, M. Bacon, M. Frank, G. Bohrmann, G. Bareille, and L. D. Labeyrie, Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period, Nature, 389, 929935, 1997.
  • Froelich, P. N., V. Blanc, R. A. Mortlock, S. N. Chillrud, W. Dunstan, A. Udomkit, and T. H. Peng, River fluxes of dissolved silica to the ocean were higher during glacials: Ge/Si in diatoms, rivers, and oceans, Paleoceanography, 7(6), 739767, 1992.
  • Gnanadesikan, A., R. D. Slater, N. Gruber, and J. L. Sarmiento, Oceanic vertical exchange and new production: A comparison between models and observations, Deep Sea Res., Part II, 49, 363401, 2002.
  • Gordon, A., and B. A. Huber, Southern Ocean winter mixed layer, J. Geophys. Res., 95(C7), 11,65511,672, 1990.
  • Gruber, N., Anthropogenic CO2 in the Atlantic Ocean, Global Biogeochem. Cycles, 12(1), 165192, 1998.
  • Guilderson, T., R. G. Fairbanks, and J. L. Rubenstone, Tropical temperature variations since 20,000 years ago: Modulating interhemispheric climate change, Science, 263, 663665, 1994.
  • Harrison, K. G., Role of increased marine silica input on paleo-pCO2 levels, Paleoceanography, 15(3), 292298, 2000.
  • Hurd, D. C., and S. Birdwhitell, On producing a more general model for biogenic silica dissolution, Am. J. Sci., 283, 128, 1983.
  • Hutchins, D. A., and K. W. Bruland, Iron-limited diatom growth and Si:N uptake ratios in coastal upwelling regime, Nature, 393, 561564, 1998.
  • Ingle, S. E., C. H. Culberson, J. E. Hawley, and R. M. Pytkowicz, The solubility of calcite in seawater at atmospheric pressure and 35‰ salinity, Mar. Chem., 1, 295307, 1973.
  • Kamatani, A., Dissolution rates of silica from diatoms decomposing at various temperatures, Mar. Biol. Berlin, 68, 9196, 1982.
  • Keir, R. S., The dissolution kinetics of biogenic calcium carbonates in seawater, Geochim. Cosmochim. Acta, 44, 241252, 1980.
  • Knox, F., and M. B. McElroy, Changes in atmospheric CO2: Influence of the Maine biota at high latitudes, J. Geophys. Res., 89(D3), 46294637, 1984.
  • Kumar, N., R. F. Anderson, R. A. Mortlock, P. N. Froelich, P. Kubik, B. Dittrich-Hannen, and M. Suter, Increased biological productivity and export production in the glacial Southern Ocean, Nature, 378, 675680, 1995.
  • Laws, E. A., P. G. Falkowski, W. O. Smith Jr., H. Ducklow, and J. J. McCarthy, Temperature effects on export production in the open ocean, Global Biogeochem. Cycles, 14(4), 12311246, 2000.
  • Legrand, M., C. Feniet-Saigne, E. S. Saltzman, G. Germain, N. I. Barkoc, and V. N. Petrov, Ice-core record of oceanic emissions of dimethylsulphide during the last climate cycle, Nature, 350, 144146, 1991.
  • Leuenberger, M., U. Siegenthaler, and C. C. Langway, Carbon isotope composition of atmospheric CO2 during the last ice age from an Antarctic ice core, Nature, 357, 488490, 1992.
  • Levitus, S., and T. P. Boyer, World Ocean Atlas 1994, vol. 4, Temperature, Natl. Oceanic and Atmos. Admin., Washington, D. C., 1994.
  • Levitus, S., M. E. Conkright, J. L. Reid, R. G. Najjar, and A. Mantyla, Distribution of nitrate, phosphate and silicate in the world oceans, Progr. Oceanogr., 31, 245273, 1993.
  • Levitus, S., R. Burgett, and T. P. Boyer, World Ocean Atlas 1994, vol. 3, Salinity, Natl. Oceanic and Atmos. Admin., Washington, D. C., 1994.
  • Li, Y.-H., T. Takahashi, and W. S. Broecker, Degree of saturation of CaCO3 in the oceans, J. Geophys. Res., 74(23), 55075525, 1969.
  • Lynch-Stieglitz, J., T. F. Stocker, W. S. Broecker, and R. G. Fairbanks, The influence of air-sea exchange on the isotopic composition of oceanic carbon: Observations and modeling, Global Biogeochem. Cycles, 9(4), 653665, 1995.
  • Maier-Reimer, E., Geochemical cycles in an ocean general circulation model: Preindustrial tracer distributions, Global Biogeochem. Cycles, 7(3), 645677, 1993.
  • Maier-Reimer, E., and R. Bacastow, Modeling of geochemical tracers in the ocean, in Climate-Ocean Interaction, edited by M. E. Schlesinger, pp. 233267, Kluwer Acad., Norwell, Mass., 1990.
  • Martin, J. H., Iron as a limiting factor in oceanic productivity, in Primary Productivity and Biogeochemical Cycles in the Sea, edited by P. G. Falkowski, and A. D. Woodhead, pp. 123137, Plenum, New York, 1992.
  • Martin, J. H., and S. E. Fitzwater, Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic, Nature, 331, 341343, 1988.
  • Martin, J. H., et al., Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean, Nature, 371, 123129, 1994.
  • Martin, W. R., and F. L. Sayles, CaCO3 dissolution in sediments of the Ceara Rise, western equatorial Atlantic, Geochim. Cosmochim. Acta, 60, 243263, 1996.
  • Matsumoto, K., J. Lynch-Stieglitz, and R. F. Anderson, Similar glacial and Holocene Southern Ocean hydrography, Paleoceanography, 16(5), 445454, 2001.
  • McCartney, M. S., Subantarctic mode water, Deep Sea Res., 24, Suppl., 103119, 1977.
  • Millero, F. J., Thermodynamics of the carbon dioxide system in the oceans, Geochim. Cosmochim. Acta, 59, 661677, 1995.
  • Mook, W. G., J. C. Bommerson, and W. H. Straverman, Carbon isotope fraction between dissolved bicarbonate and gaseous carbon dioxide, Earth Planet. Sci. Lett., 22, 169176, 1974.
  • Najjar, R. G., and J. C. Orr, Biotic how to, internal OCMIP report, 15 pp., Lab.des Sci. du Climat et l'Environ., Saclay, Gif-sur-Yvette, France, 1999.
  • Nelson, D. M., P. Tréguer, M. A. Brzezinski, A. Leynaert, and B. Quéguiner, Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation, Global Biogeochem. Cycles, 9(3), 359372, 1995.
  • Nelson, D. M., et al., Vertical budgets for organic carbon and biogenic silica in the Pacific Sector of the Southern Ocean, 1996–1998, Deep Sea Res., Part II, 49, 16451673, 2002.
  • Orsi, A. H., T. I. Whitworth, and W. D. J. Nowlin, On the meridional extent and fronts of the Antarctic Circumpolar Current, Deep Sea Res., Part I, 42, 631673, 1995.
  • Petit, J. R., et al., Climate and atmospheric history of the past 420,000 years from Vostok ice core, Antarctica, Nature, 399, 429436, 1999.
  • Pondaven, P., D. Ruiz-Pino, C. Frabalo, P. Treguer, and C. Jeandel, Interannual variability of Si and N cycles at the time-series station KERFIX between 1990 and 1995: A 1-D modelling study, Deep Sea Res., Part I, 47, 223257, 2000.
  • Press, W. H., B. R. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes, 818 pp., Cambridge Univ. Press, New York, 1992.
  • Rostek, F., G. Ruhland, F. C. Bassinot, P. J. Muller, L. Labeyrle, Y. Lancelot, and E. Bard, Alkenone paleotemperatures for the last 150,000 years for an equatorial Indian Ocean core, Nature, 364, 319321, 1993.
  • Sabine, C. L., R. M. Key, K. M. Johnson, F. J. Millero, A. Poisson, J. L. Sarmiento, D. W. R. Wallace, and C. D. Winn, Anthropogenic CO2 inventory of the Indian Ocean, Global Biogeochem. Cycles, 13(1), 179198, 1999.
  • Sarmiento, J. L., and J. R. Toggweiler, A new model for the role of the oceans in determining atmospheric pCO2, Nature, 308, 621624, 1984.
  • Shackleton, N. J., Carbon-13 in Uvigerina: Tropical rainforest history and the equatorial Pacific carbonate dissolution cycles, in Fate of Fossil Fuel CO2 in the Oceans, edited by A. Malahoff, pp. 401427, Plenum, New York, 1977.
  • Shackleton, N. J., The 100,000-year ice age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity, Nature, 289, 18971901, 2000.
  • Siegenthaler, U., and F. Joos, Use of a simple model for studying oceanic tracer distributions and the global carbon cycle, Tellus, Ser. B, 44, 186207, 1992.
  • Siegenthaler, U., and K. O. Munnich, 13C/12C Fractionation during CO2 transfer from air to sea, in Carbon Cycle Modelling, edited by B. Bolin, pp. 249257, John Wiley, New York, 1981.
  • Siegenthaler, U., and T. Wenk, Rapid atmospheric CO2 variations and ocean circulation, Nature, 308, 624626, 1984.
  • Sigman, D. M., and E. A. Boyle, Glacial/interglacial variations in atmospheric carbon dioxide, Nature, 407, 859869, 2000.
  • Sigman, D. M., D. C. McCorkle, and W. R. Martin, The calcite lysocline as a constraint on glacial/interglacial low-latitude production changes, Global Biogeochem. Cycles, 12(3), 409427, 1998.
  • Smith, H. J., H. Fischer, M. Wahlen, D. Mastroianni, and B. Deck, Dual modes of the carbon cycle since the Last Glacial Maximum, Nature, 400, 248250, 1999.
  • Smith, W. O. J., R. F. Anderson, J. K. Moore, L. A. Codispoti, and J. M. Morrison, The US Southern Ocean Joint Global Ocean Flux Study: An introduction to AESOPS, Deep Sea Res., Part II, 47, 30733093, 2000.
  • Stuiver, M., Workshop on 14C data reporting, Radiocarbon, 22(3), 964966, 1980.
  • Stute, M., P. Schlosser, J. F. Clark, and W. S. Broecker, Paleotemperatures in the southwestern United States derived from noble gases in ground water, Science, 256, 10001003, 1992.
  • Takeda, S., Influence of iron availability of nutrient consumption ratio of diatoms in oceanic waters, Nature, 393, 774777, 1998.
  • Toggweiler, J. R., Variation of atmospheric CO2 by ventilation of the ocean's deepest water, Paleoceanography, 14(5), 571588, 1999.
  • Toggweiler, J. R., and J. L. Sarmiento, Glacial to interglacial changes in atmospheric carbon dioxide: The critical role of ocean surface water in high latitudes, in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophys. Monogr. Ser., vol. 32, edited by E. T. Sundquist, and W. S. Broecker, pp. 163184, AGU, Washington, D.C., 1985.
  • Toggweiler, J. R., K. Dixon, and K. Bryan, Simulations of radiocarbon in a coarse resolution world ocean model, 1, Steady-state prebomb distributions, J. Geophys. Res., 94(C6), 82178242, 1989.
  • Treguer, P., and P. Pondaven, Silica control of carbon dioxide, Nature, 406, 358359, 2000.
  • Vogel, J. G., P. M. Grootes, and W. G. Mook, Isotopic fractionation between gaseous and dissolved carbon dioxide, Z. Phys., 230, 225238, 1970.
  • Weiss, R. F., W. S. Broecker, H. Craig, and D. Spencer, GEOSECS Indian Ocean Expedition, in Hydrographic Data 1977–1978, 48 pp., Natl. Sci. Found., Washington, D. C., 1983.
  • Yamanaka, Y., and E. Tajika, Role of dissolved organic matter in the marine biogeochemical cycle: Studies using an ocean biogeochemical general circulation model, Global Biogeochem. Cycles, 11(4), 599612, 1997.
  • Zhang, J., P. D. Quay, and D. O. Wilbur, Carbon isotope fractionation during gas-water exchange and dissolution of CO2, Geochim. Cosmochim. Acta, 59, 107114, 1995.