SEARCH

SEARCH BY CITATION

References

  • Antoine, D., and A. Morel, Ocean primary production, 1, Adaptation of a spectral light-photosynthesis model in view of application to satellite chlorophyll observations, Global Biogeochem. Cycles, 10, 4355, 1996a.
  • Antoine, D., and A. Morel, Ocean primary production, 2, Estimation at global scale from satellite (Coastal Zone Color Scanner) chlorophyll, Global Biogeochem. Cycles, 10, 5769, 1996b.
  • Balch, W. M., Accuracy of historical primary production measurements, in International Workshop on Oceanographic Biological and Chemical Data Management, edited by S. Levitus, and L. Oliounine, NOAA/NESDIS Tech. Rep. 8, pp. 137146, 1997.
  • Balch, W. M., R. W. Eppley, and M. R. Abbott, Remote sensing of primary production, II, A semi-analytical algorithm based on pigments, temperature, and light, Deep Sea Res., 36, 12011217, 1989.
  • Balch, W. M., R. Evans, J. Brown, G. Feldman, C. McClain, and W. Esaias, The remote sensing of ocean primary productivity: Use of a new data compilation to test satellite algorithms, J. Geophys. Res., 97(C2), 22792293, 1992.
  • Barber, R. T., M. P. Sanderson, S. T. Lindley, F. Chai, J. Newton, C. C. Trees, D. G. Foley, and F. P. Chavez, Primary productivity and its regulation in the equatorial Pacific during and following the 1991–92 El Niño, Deep Sea Res., Part II, 43, 933969, 1996.
  • Barber, R. T., J. Marra, R. C. Bidigare, L. A. Codispoti, D. Halpern, Z. Johnson, M. Latasa, R. Goericke, and S. L. Smith, Primary productivity and its regulation in the Arabian Sea during 1995, Deep Sea Res., Part II, 48, 11271172, 2001.
  • Behrenfeld, M. J., and P. G. Falkowski, Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnol. Oceanogr., 42, 120, 1997a.
  • Behrenfeld, M. J., and P. G. Falkowski, A consumer's guide to phytoplankton primary productivity models, Limnol. Oceanogr., 42, 14791491, 1997b.
  • Behrenfeld, M. J., et al., Temporal variations in the photosynthetic biosphere, Science, 291, 25942597, 2001.
  • Behrenfeld, M. J., E. Marañón, D. A. Siegel, and S. B. Hooker, A photoacclimation and nutrient-based model of light-saturated photosynthesis for quantifying oceanic primary production, Mar. Ecol. Prog. Ser., 228, 103117, 2002.
  • Berthon, J.-F., and A. Morel, Validation of a spectral light-photosynthesis model and use of the model in conjunction with remotely sensed pigment observations, Limnol. Oceanogr., 37, 781796, 1992.
  • Bidigare, R. R., B. B. Prezelin, and R. C. Smith, Bio-optical models and the problems of scaling, in Primary Productivity and Biogeochemical Cycles in the Sea, edited by P. G. Falkowski, and A. D. Woodhead, pp. 175212, Plenum, New York, 1992.
  • Bricaud, A., M. Bain, A. Morel, and H. Claustre, Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization, J. Geophys. Res., 100(C7), 13,32113,332, 1995.
  • Campbell, J. W., and J. E. O’Reilly, Role of satellites in estimating primary productivity on the northwest Atlantic continental shelf, Cont. Shelf Res., 8(2), 179204, 1988.
  • Campbell, J. W., S. R. Gaudreau, and G. M. Weiss, The challenge of scaling primary productivity models to the global ocean: A statistical approach, paper presented at International Conference on Photosynthesis and Remote Sensing, Eur. Assoc. of Remote Sens. Lab., Montpellier, France, 28–30 August 1995.
  • Chipman, D. W., J. Marra, and T. Takahashi, Primary production at 47N and 20W in the North Atlantic Ocean: A comparison between the 14C incubation method and the mixed layer carbon budget, Deep Sea Res., 40, 151169, 1993.
  • Codispoti, L. A., G. E. Friederich, R. L. Iverson, and D. W. Hood, Temporal changes in the inorganic carbon system of the southeastern Bering Sea during spring 1980, Nature, 296, 242245, 1982.
  • Ducklow, H. W., and R. P. Harris, JGOFS: The North Atlantic Bloom Experiment, Deep Sea Res., Part II, 40, 18, 1993.
  • Eppley, R. W., Temperature and phytoplankton growth in the sea, Fish. Bull., 70, 10631085, 1972.
  • Eppley, R. W., E. Steward, M. R. Abbott, and U. Heyman, Estimating ocean primary production from satellite chlorophyll: Introduction to regional differences and statistics for the Southern California Bight, J. Plankton Res., 7, 5770, 1985.
  • Esaias, W. E., et al., An overview of MODIS capabilities for ocean science observations, IEEE Trans. Geosci. Remote Sens., 36, 12501265, 1998.
  • Falkowski, P. G., and D. A. Kiefer, Chlorophyll a fluorescence and phytoplankton: Relationship to photosynthesis and biomass, J. Plankton Res., 7, 715731, 1985.
  • Falkowski, P. G., and J. A. Raven, Aquatic Photosynthesis, Blackwell Sci., Malden, Mass., 1997.
  • Fitzwater, S. E., G. A. Knauer, and J. H. Martin, Metal contamination and its effect on primary production measurements, Limnol. Oceanogr., 27, 544551, 1982.
  • Gordon, H. R., and A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery, Springer-Verlag, New York, 1983.
  • Gordon, H. R., R. W. Austin, D. K. Clark, W. A. Hovis, and C. S. Yentsch, Ocean color measurements, in Advances in Geophysics, vol. 27, Satellite Oceanic Remote Sensing, edited by G. Salzman, pp. 297333, Academic, San Diego, Calif., 1985.
  • Gregg, W. W., and K. L. Carder, A simple spectral solar irradiance model for cloudless maritime atmospheres, Limnol. Oceanogr., 35, 16571675, 1990.
  • Gregg, W. W., and M. E. Conkright, Global seasonal climatologies of ocean chlorophyll: Blending in situ and satellite data for the Coastal Zone Color Scanner era, J. Geophys. Res., 106(C2), 24992525, 2001.
  • Howard, K. L., Estimating global ocean primary production using satellite-derived data, M.S. thesis, 98 pp., Univ. of R. I., Kingston, 1995.
  • Howard, K. L., and J. A. Yoder, Contribution of the subtropical ocean to global primary primary production, in Space Remote Sensing of the Subtropical Oceans, edited by C.-T. Liu, pp. 157168, Pergamon, New York, 1997.
  • Iverson, R. L., W. E. Esaias, and K. Turpie, Ocean annual phytoplankton carbon and new production, and annual export production estimated with empirical equations and CZCS data, Global Change Biol., 6, 5772, 2000.
  • Kiefer, D. A., and R. A. Reynolds, Advances in understanding phytoplankton fluorescence and photosynthesis, in Primary Productivity and Biogeochemical Cycles in the Sea, edited by P. G. Falkowski, and A. D. Woodhead, pp. 155174, Plenum, New York, 1992.
  • Kirk, J. T. O., Light and Photosynthesis in Aquatic Ecosystems, 2nd ed., Cambridge Univ. Press, New York, 1994.
  • Knudson, C., W. S. Chamberlin, and J. Marra, Primary production and irradiance data for the U.S. JGOFS (leg 2), Atlantis II (Cruise 119-4), L-DGO Tech. Rep. LDGO-89-4, Lamont-Doherty Earth Obs., Palisades, New York, 1989.
  • Letelier, R. M., and M. R. Abbott, An analysis of chlorophyll fluorescence algorithms for the Moderate Resolution Imaging Spectroradiometer (MODIS), Remote Sens. Environ., 58, 215223, 1996.
  • Longhurst, A., S. Sathyendranath, T. Platt, and C. Caverhill, An estimate of global primary production in the ocean from satellite radiometer data, J. Plankton Res., 17, 12451271, 1995.
  • Moline, M. A., and B. B. Prezelin, High-resolution time-series data for 1991/1992 primary production and related parameters at a Palmer LTER coastal site: Implications for modeling carbon fixation in the Southern Ocean, Polar Biol., 17(1), 3953, 1997.
  • Morel, A., Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 waters), J. Geophys. Res., 93(C9), 10,74910,768, 1988.
  • Morel, A., Light and marine photosynthesis: A spectral model with geochemical and climatological implications, Prog. Oceanogr., 26, 263306, 1991.
  • Morel, A., and J.-F. Berthon, Surface pigments, algal biomass profiles, and potential production of the euphotic layer: Relationships reinvestigated in view of remote-sensing applications, Limnol. Oceanogr., 34, 15451562, 1989.
  • Morel, A., D. Antoine, M. Babin, and Y. Dandonneau, Measured and modeled primary production in the Northeast Atlantic (EUMELI JGOFS program): The impact of natural variations in photosynthetic parameters on model predictive skill, Deep Sea Res., Part 1, 43, 12731304, 1996.
  • Ondrusek, M. E., R. R. Bidigare, K. Waters, and D. M. Karl, A predictive model for estimating rates of primary production in the subtropical North Pacific Ocean, Deep Sea Res., Part II, 48, 18371863, 2001.
  • O'Reilly, J. E., C. Evans-Zetlin, and D. A. Busch, Primary production, chap. 21, in Georges Bank, edited by R. H. Backus, pp. 220233, MIT Press, Cambridge, Mass., 1987.
  • O'Reilly, J. E., S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, Ocean color chlorophyll algorithms for SeaWiFS, J. Geophys. Res., 103(C11), 24,93724,953, 1998.
  • Peterson, B. J., Aquatic primary productivity and the 14CO2 method: A history of the productivity problem, Ann. Rev. Ecol. Syst., 11, 369385, 1980.
  • Petzold, T., Volume scattering functions for selected ocean waters, SIO Ref. 72-78, Scripps Inst. of Oceanogr., San Diego, Calif., 1972.
  • Platt, T., Primary production of the ocean water column as a function of surface light intensity: Algorithms for remote sensing, Deep Sea Res., 33, 115, 1986.
  • Platt, T., and S. Sathyendranath, Estimators of primary production for interpretation of remotely sensed data on ocean color, J. Geophys. Res., 98(C8), 14,56114,567, 1993.
  • Platt, T., C. Caverhill, and S. Sathyendranath, Basin-scale estimates of primary production by remote sensing: The North Atlantic, J. Geophys. Res., 96(C8), 15,14715,159, 1991.
  • Pope, R. M., and E. S. Fry, Absorption spectrum (380–700 nm) of pure water, II, Integrating cavity measurements, Appl. Opt., 36, 87108723, 1997.
  • Prezelin, B. B., and H. E. Glover, Variability in time/space estimates of phytoplankton, biomass, and productivity in the Sargasso Sea, J. Plankton Res., 13, 4567, 1991.
  • Richardson, K., Comparison of 14C primary production determinations made by different laboratories, Mar. Ecol. Prog. Ser., 72, 189201, 1991.
  • Smith, R. C., and K. S. Baker, The bio-optical state of ocean waters and remote sensing, Limnol. Oceanogr., 23, 247259, 1978.
  • Smith, R. C., and K. S. Baker, Optical properties of the clearest natural waters (200–800 nm), Appl. Optics, 20, 177184, 1981.
  • Smith, W. O.Jr., and D. M. Nelson, Primary productivity and nutrient uptake in an Antarctic marginal ice zone during austral spring and autumn, Limnol. Oceanogr., 35, 809821, 1990.
  • Tanré, D., C. Deroo, P. Duhaut, M. Herman, J. Morcrette, J. Perbos, and P. Deschamps, Description of a computer code to simulate the satellite signal in the solar spectrum: The 5S code, Int. J. Remote Sens., 11, 659668, 1990.
  • Trela, P., S. Sathyendranath, R. M. Moore, and D. E. Kelley, Effect of the nonlinearity of the carbonate system on partial pressure of carbon dioxide in the oceans, J. Geophys. Res., 100(C4), 68296844, 1995.
  • Welschmeyer, N. A., S. Strom, R. Goericke, G. Ditullio, M. Belvin, and W. Petersen, Primary production in the sub-Arctic Pacific Ocean: Project SUPER, Mar. Ecol. Prog. Ser., 74, 101135, 1993.
  • Wozniak, B., J. Dera, and O. Koblentz-Mischke, Modeling the relationship between primary production, optical properties, and nutrients in the sea, Proc. SPIE Soc. Opt. Eng., 1750, 246275, 1992.