SEARCH

SEARCH BY CITATION

References

  • Aerts, R., The advantages of being evergreen, Trends Ecol. Evol., 10, 402407, 1995.
  • Amthor, J. S., Scaling CO2-photosynthesis relationships from the leaf to the canopy, Photosyn. Res., 39, 321350, 1994.
  • Amthor, J. S., The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 years later, Ann. Bot., 86, 120, 2000.
  • Atkin, O. K., J. R. Evans, M. C. Ball, H. Lambers, and T. L. Pons, Leaf respiration in the light and dark. Interactions between temperature and irradiance, Plant Physiol., 122, 915923, 2000.
  • Axelrod, D. I., Origin of deciduous and evergreen habits in temperate forests, Evolution, 20, 115, 1966.
  • Axelrod, D. I., An interpretation of Cretaceous and Tertiary biota in polar regions, Palaeogeogr. Palaeoclimatol. Palaeoecol., 45, 105147, 1984.
  • Beerling, D. J., Modelling palaeo-photosynthesis: Late-Cretaceous to present, Philos. Trans. R. Soc., London, Ser. B, 346, 421432, 1994.
  • Beerling, D. J., The net primary productivity and water use efficiency of forests in the geological past, Adv. Bot. Res., 26, 193227, 1997.
  • Beerling, D. J., Global terrestrial productivity in the Mesozoic era, in Climates: Past and Present, edited by M. B. Hart. pp. 1732, Geol. Soc. Spec. Publ., 181, 2000.
  • Beerling, D. J., CO2 and the end-Triassic mass extinction, Nature, 415, 386387, 2002.
  • Beerling, D. J., and C. P. Osborne, Physiological ecology of Mesozoic polar forests in a high CO2 environment, Ann. Bot., 89, 329339, 2002.
  • Beerling, D. J., and W. P. Quick, A new technique for estimating rates of carboxylation and electron transport in leaves of C3 plants for use in dynamic global vegetation models, Global Change Biol., 1, 289294, 1995.
  • Beerling, D. J., F. I. Woodward, M. Lomas, and A. J. Jenkins, Testing the responses of a dynamic global vegetation model to environmental change: A comparison of observations and predictions, Global Ecol. Biogeogr., 6, 439450, 1997.
  • Bernacchi, C. J., E. L. Singsaas, C. Pimentel, A. R. Portis, and S. P. Long, Improved temperature response functions for models of Rubisco-limited photosynthesis, Plant Cell Environ., 24, 253259, 2001.
  • Berner, R. A., and Z. Kothavala, GEOCARB III: A revised model of atmospheric CO2 over Phanerozoic time, Am. J. Sci., 301, 182204, 2001.
  • Betts, R. A., P. M. Cox, S. E. Lee, and F. I. Woodward, Contrasting physiological and structural vegetation feedbacks in climate change simulations, Nature, 387, 796799, 1997.
  • Bonan, G. B., and K. Van Cleve, Soil-temperature, nitrogen mineralization, and carbon source sink relationships in boreal forests, Can. J. For. Res., 22, 629639, 1992.
  • Bonan, G. B., D. Pollard, and S. L. Thompson, Effects of boreal forest vegetation on global climate, Nature, 359, 716718, 1992.
  • Bonan, G. B., F. S. Chapin, and S. L. Thompson, Boreal forest and tundra ecosystems as components of the climate system, Clim. Change, 29, 145167, 1995.
  • Bond, B. J., B. T. Farnsworth, R. A. Coulombe, and W. E. Winner, Foliage physiology and biochemistry in response to light gradients in conifers with varying shade tolerance, Oecologia, 120, 183190, 1999.
  • Bruniquel-Pinel, V., and J. P. Gastellu-Etchegorry, Sensitivity of texture of high resolution images of forest to biophysical and acquisition parameters, Remote Sens. Environ., 65, 6185, 1998.
  • Campbell, G. S., and J. M. Norman. An Introduction to Environmental Biophysics, 2nd ed., 286 pp., Springer-Verlag, New York, 1998.
  • Carey, E. V., R. M. Callaway, and E. H. DeLucia, Stem respiration of Ponderosa Pines grown in contrasting climates: Implications for global climate change, Oecologia, 111, 1925, 1997.
  • Chabot, B. F., and D. J. Hicks, The ecology of leaf life spans, Annu. Rev. Ecol. Syst., 13, 229259, 1982.
  • Chaloner, W. G., and G. T. Creber, The phenomenon of forest growth in Antarctica: A review, in Origins and Evolution of the Antarctic Biota, edited by J. A. Crame, pp. 8588, Geol. Soc. Spec. Publ., 47, 1989.
  • Chanzy, A., and L. Bruckler, Significance of soil surface moisture with respect to daily bare soil evaporation, Water Resour. Res., 29, 11131125, 1993.
  • Chen, J. M., Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands, Agric. For. Meteorol., 80, 135163, 1996.
  • Chen, J. M., and T. A. Black, Measuring leaf area index of plant canopies with branch architecture, Agric. For. Meteorol., 57, 112, 1991.
  • Chen, J. M., and T. A. Black, Foliage area and architecture of plant canopies from sunfleck size distributions, Agric. For. Meteorol., 60, 249266, 1992.
  • Chen, J. M., T. A. Black, and R. S. Adams, Evaluation of hemispherical photography for determining plant area index and geometry of a forest stand, Agric. For. Meteorol., 56, 129143, 1991.
  • Chen, J., et al., Energy budget and fluxes of CO2 and H2O of a 20, 40, and 500 year-old Douglas-fir forest, Ecosystems, (Special Issue), in press, 2002.
  • Chung, H. H., and R. L. Barnes, Photosynthetic allocation in Pinus taeda, I, Substrate requirements for synthesis of shoot biomass, Can. J. For. Res., 7, 106111, 1977.
  • Clothier, B. E., K. L. Clawson, P. J. Pinter, M. S. Moran, R. J. Reginato, and R. D. Jackson, Estimation of soil heat flux from net radiation during the growth of Alfalfa, Agric. For. Meteorol., 37, 319329, 1986.
  • Coley, P. D., Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defence, Oecologia, 74, 531536, 1988.
  • Collatz, G. J., J. T. Ball, C. Grivet, and J. A. Berry, Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration—a model that includes a laminar boundary layer, Agric. For. Meteorol., 54, 107136, 1991.
  • Connor, W. H., and J. W. Day, Productivity and composition of a baldcypress-water tupelo site and a bottomland hardwood site in a Louisiana swamp, Am. J. Bot., 63, 13541364, 1976.
  • Cramer, W., D. W. Kicklighter, A. Bondeau, B. Moore, G. Churkina, B. Nemry, A. Ruimy, A. L. Schloss, and the participants of the Potsdam NPP model intercomprison, Comparing global models of terrestrial net primary productivity (NPP): Overview and key results, Global Change Biol., 5, Suppl. 1, 115, 1999.
  • Cramer, W., et al., Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models, Global Change Biol., 7, 357373, 2001.
  • Creber, G. T., and W. G. Chaloner, Tree growth in the Mesozoic and early Tertiary and the reconstruction of palaeoclimates, Palaeogeogr. Palaeoclimatol. Palaeoecol., 52, 3560, 1985.
  • Crowley, T. J., and R. A. Berner, CO2 and climate change, Science, 292, 870872, 2001.
  • Crowley, T. J., and G. R. North, Paleoclimatology, 339 pp., Oxford Univ Press, New York, 1991.
  • DeLucia, E. H., et al., Net primary production of a forest ecosystem with experimental CO2 enrichment, Science, 284, 11771179, 1999.
  • de Pury, D. G. G., and G. D. Farquhar, Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models, Plant Cell Environ., 20, 537557, 1997.
  • Douglas, J. G., and G. E. Williams, Southern polar forests: The early Cretaceous floras of Victoria and their palaeoclimatic significance, Palaeogeogr. Palaeoclimatol. Palaeoecol., 39, 171185, 1982.
  • Douville, H., S. Planton, J. F. Royer, D. B. Stephenson, S. Tyeca, L. Kergoat, S. Lafont, and R. A. Betts, Importance of vegetation feedbacks in doubled-CO2 climate experiments, J. Geophys. Res., 105, D14,841D14,861, 2000.
  • Drake, B. G., M. A. Gonzalez-Meler, and S. P. Long, More efficient plants: A consequence of rising atmospheric CO2? Annu. Rev. Plant Physiol. Plant Mol. Biol., 48, 607637, 1997.
  • Drake, B. G., et al., Does elevated atmospheric CO2 concentration inhibit mitochondrial respiration in green plants? Plant Cell Environ, 22, 649657, 1999.
  • Ekart, D. D., T. E. Cerling, I. P. Montanez, and N. Tabor, A 400 million year carbon isotope record of pedogenic carbonate: Implications for atmospheric carbon dioxide, Am. J. Sci., 299, 805827, 1999.
  • Ellsworth, D. S., and P. B. Reich, Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest, Oecologia, 96, 169178, 1993.
  • Falcon-Lang, H. J., A method to distinguish between woods produced by evergreen and deciduous coniferopsids on the basis of growth ring anatomy: A new palaeoecological tool, Palaeontology, 43, 785793, 2000a.
  • Falcon-Lang, H. J., The relationship between leaf longevity and growth ring markedness in modern conifer woods and its implications for palaeoclimatic studies, Palaeogeogr. Palaeoclimatol. Palaeoecol., 160, 317328, 2000b.
  • Falcon-Lang, H. J., and D. J. Cantrill, Cretaceous (Late Albian) coniferales of Alexander Island, Antarctica, 1, wood taxonomy: A quantitative approach, Rev. Pal. Pal., 111, 117, 2000.
  • Falcon-Lang, H. J., and D. J. Cantrill, Leaf phenology of some mid-Cretaceous polar forests, Alexander Island, Antarctica, Geol. Mag., 138, 3952, 2001.
  • Farquhar, G. D., S. von Caemmerer, and J. A. Berry, A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species, Planta, 149, 7890, 1980.
  • Fassnacht, K. S., S. T. Gower, J. M. Norman, and R. E. McMurtrie, A comparison of optical and direct methods for estimating foliage surface area index in forests, Agric. For. Meteorol., 71, 183207, 1994.
  • Ferrier, R. C., and I. J. Alexander, Internal redistribution of N in Sitka spruce seedlings with partially droughted root systems, For. Sci., 37, 860870, 1991.
  • Foley, J. A., I. C. Prentice, N. Ramankutty, S. Levis, D. Pollard, S. Sitch, and A. Haxeltine, An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics, Global Biogeochem. Cycles, 10, 603628, 1996.
  • Frakes, L. A., J. Francis, J. I. Syktus. Climate Modes of the Phanerozoic, Cambridge Univ. Press, New York, 1992.
  • Francis, J. E., Growth rings in Cretaceous and Tertiary wood from Antarctica and their paleoclimatic implications, Palaeontology, 26, 665684, 1986.
  • Francis, J. E., A 50-million-year-old fossil forest from Strathcona Fiord, Ellesmere Island, Arctic Canada—Evidence for a warm polar climate, Arctic, 41, 314318, 1988.
  • Friedlingstein, P., G. Joel, C. B. Field, and I. Y. Fung, Toward an allocation scheme for global terrestrial carbon models, Global Change Biol., 5, 755770, 1999.
  • Gates, D. M., Biophysical Ecology, Springer-Verlag, New York, 1979.
  • Gholz, H. L., Environmental limitations on aboveground net primary production, leaf area, and biomass in vegetation zones of the Pacific Northwest, Ecology, 63, 469481, 1982.
  • Givnish, T. J., Optimal stomatal conductance, allocation of energy between leaves and roots, and the marginal cost of transpiration, in On the Economy of Plant Form and Function, edited by T. J. Givnish, pp. 171213, Cambridge Univ. Press, New York, 1986.
  • Global Soil Data Task, Global Soil Data Products CD-ROM (IGBP-DIS). International Geosphere-Biosphere Programme—Data and Information Services, ORNL Distrib. Active Arch. Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn., 2000. (Available at http://www.daac.ornl.gov/).
  • Gordon, W. S., and R. B. Jackson, Nutrient concentrations in fine roots, Ecology, 81, 275280, 2000.
  • Goulden, M. L., J. W. Munger, S.-M. Fan, B. C. Daube, and S. C. Wofsy, Measurements of carbon sequestration by long-term eddy covariance: Methods and a critical evaluation of accuracy, Global Change Biol., 2, 169182, 1996.
  • Gower, S. T., J. G. Vogel, J. M. Norman, C. J. Kucharik, S. J. Steele, and T. K. Stow, Carbon distribution and aboveground net primary production in aspen, jack pine, and black spruce stands in Saskatchewan and Manitoba, Canada, J. Geophys. Res., 102, D29,029D29,041, 1997.
  • Gower, S. T., A. Hunter, J. Campbell, J. Vogel, H. Veldhuis, J. Harden, S. Trumbore, J. M. Norman, and C. J. Kucharik, Nutrient dynamics of the southern and northern BOREAS boreal forests, Ecoscience, 7, 481490, 2000.
  • Granier, A., and D. Loustau, Measuring and modelling the transpiration of a maritime pine canopy from sap-flow data, Agric. For. Meteorol., 71, 6181, 1994.
  • Granier, A., P. Biron, N. Bréda, J.-Y. Pontallier, and B. Saugier, Transpiration of trees and forest stands: Short and long-term monitoring using sapflow methods, Global Change Biol., 2, 265274, 1996.
  • Greenwood, D. L., and S. L. Wing, Eocene continental climates and latitudinal temperature gradients, Geology, 23, 10441048, 1995.
  • Grier, C. C., and R. S. Logan, Old-growth Pseudotsuga menziesii communities of a western Oregon watershed: Biomass distribution and production budgets, Ecol. Monogr., 47, 373400, 1977.
  • Halle, T. G., The Mesozoic flora of Graham Land. Wissenschaftliche Ergebnisse der Schwedischen Südpolar-Expedition 1901-03. Bd. III, Lief. 14, 123 pp., Taf. 1–9, 1913.
  • Harley, P. C., R. B. Thomas, J. F. Reynolds, and B. R. Strain, Modelling photosynthesis of cotton grown in elevated CO2, Plant Cell Environ., 15, 271282, 1992.
  • Haxeltine, A., and I. C. Prentice, BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types, Global Biogeochem. Cycles, 10, 693709, 1996.
  • Hollinger, D. Y., Canopy organization and foliage photosynthetic capacity in a broad-leaved evergreen montaine forest, Funct. Ecol., 3, 5362, 1989.
  • Hollinger, D. Y., Leaf and simulated whole-canopy photosynthesis in two co-occurring tree species, Ecology, 73, 114, 1992.
  • Jarvis, P. G., G. B. James, J. J. Landsberg, Coniferous forest, in Vegetation and the Atmosphere, edited by J. L. Monteith, pp. 171240, Academic, San Diego, Calif., 1976.
  • Jefferson, T. H., Fossil forests from the Lower Cretaceous of Alexander Island, Antarctica, Palaeontology, 25, 681708, 1982.
  • Jones, C. D., and P. M. Cox, Modeling the volcanic signal in the atmospheric CO2 record, Global Biogeochem. Cycles, 15, 453465, 2001.
  • Jones, H. G., Plants and Microclimate, 2nd ed., 428 pp., Cambridge Univ. Press, New York, 1992.
  • Kajimoto, T., Y. Matsuura, M. A. Sofronov, A. V. Volokitina, S. Mori, A. Osawa, and A. P. Abaimov, Above- and belowground biomass and net primary productivity of a Larix gmelinii stand near Tura, central Siberia, Tree Physiol., 19, 815822, 1999.
  • Katul, G., et al., Spatial variability of turbulent fluxes in the roughness sublayer of an even-aged pine forest, Boundary Layer Meteorol., 93, 128, 1999.
  • Kelliher, F. M., et al., Evaporation from an eastern Siberian larch forest, Agric. For. Meteorol., 85, 135147, 1997.
  • Kinerson, R. S., C. W. Ralston, and C. G. Wells, Carbon cycling in a loblolly pine plantation, Oecologia, 29, 1110, 1977.
  • Körner, C., Leaf diffusive conductances in the major vegetation types of the globe, in Ecophysiology of Photosynthesis, edited by E. D. Schulze, and M. M. Caldwell, pp. 463490, Springer-Verlag, New York, 1994.
  • Kothavala, Z., R. J. Oglesby, and B. Saltzman, Sensitivity of equilibrium surface temperature of CCM3 to systematic changes in atmospheric CO2, Geophys. Res. Lett., 26, 209212, 1999.
  • Lambers, H., R. K. Szaniawski, and R. de Visser, Respiration for growth, maintenance and ion uptake. An evaluation of concepts, methods, values and their significance, Physiol. Plant., 58, 556563, 1983.
  • Lee, S. E., Modelling interactions between climate and global vegetation in response to climate change, Ph.D. thesis, Univ. Sheffield, UK, 1997.
  • Leuning, R., A critical appraisal of a combined stomatal-photosynthesis model for C3 plants, Plant Cell Environ., 18, 339355, 1995.
  • Levis, S., J. A. Foley, and D. Pollard, Potential high-latitude vegetation feedbacks on CO2-induced climate change, Geophys. Res. Lett., 26, 747750, 1999.
  • Liu, S., H. Riekerk, and H. L. Gholz, Simulation of evapotranspiration from Florida pine flatwoods, Ecol. Modell., 114, 1934, 1998.
  • Long, S. P., Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: Has its importance been underestimated? Plant Cell Environ., 14, 729739, 1991.
  • Lumb, F. E., The influence of cloud on hourly amounts of total solar radiation at the sea surface, Q. J. R. Meteorol. Soc., 90, 4356, 1964.
  • Markwick, P. J., 'Equability', continentality and Tertiary 'climate': The crocodilian perspective, Geology, 22, 613616, 1994.
  • McCormick, M., L. Thomason, and C. Trepte, Atmospheric effects of the Mount Pinatubo eruption, Nature, 373, 399404, 1995.
  • McElwain, J. C., D. J. Beerling, and F. I. Woodward, Fossil plants and global warming at the Triassic-Jurassic boundary, Science, 285, 13861390, 1999.
  • McGuire, A. D., J. M. Melillo, L. A. Joyce, D. W. Kicklighter, A. L. Grace, B. Moore, and C. J. Vorosmarty, Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America, Global Biogeochem. Cycles, 6, 101124, 1992.
  • McGuire, A. D., et al., Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models, Global Biogeochem. Cycles, 15, 183206, 2001.
  • Megonigal, J. P., and F. P. Day, Organic matter dynamics in four seasonally flooded forest communities of the Dismal Swamp, Am. J. Bot., 75, 13341343, 1988.
  • Moncrieff, J. B., Y. Malhi, and R. Leuning, The propagation of errors in long-term measurements of land-atmosphere fluxes of carbon and water, Global Change Biol., 2, 231240, 1996.
  • Monteith, J. L., Evaporation and environment, in The State and Movement of Water on Living Organisms, edited by C. E. Fogg, pp. 205234, Cambridge Univ. Press, New York, 1965.
  • Monteith, J. L., and M. Unsworth, Principles of Environmental Physics, 291 pp., Edward Arnold, London, 1990.
  • Müller, M. J., Selected Climatic data for a Global Set of Standard Stations for Vegetation Science, 305 pp., Dr. W. Junk, Norwell, Mass., 1982.
  • Murty, D., R. E. McMurtrie, and M. G. Ryan, Declining forest productivity in aging forest stands: A modeling analysis of alternative hypotheses, Tree Physiol., 16, 187200, 1996.
  • Näsholm, T., A. Ekblad, A. Nordin, R. Giesler, M. Högberg, and P. Högberg, Boreal forest plants take up organic nitrogen, Nature, 392, 914916, 1998.
  • Nathorst, A. G., Nachträge zur Pälaozoischen Flora Spitzbergens. Zur Fossilen Flora der Polarländer. Teil I. Lief. IV. Stockholm, 1914.
  • New, M., M. Hulme, and P. Jones, Representing twentieth-century space-time climate variability, I, Development of a 1961–1990 mean monthly terrestrial climatology, J. Clim., 12, 829856, 1999.
  • New, M., M. Hulme, and P. Jones, Representing twentieth-century space-time climate variability, II, Development of 1901–1996 monthly grids of terrestrial surface climate, J. Clim., 13, 22172238, 2000.
  • Olmo, F. J., J. Tovar, L. Alados-Arboledas, O. Okulov, and H. O. Ohvril, A comparison of ground level solar radiative effects of recent volcanic eruptions, Atmos. Environ., 33, 45894596, 1999.
  • Olson, J. S., J. A. Watts, and L. J. Allison. Carbon in Live Vegetation of Major World Ecosystems, 164 pp., ORNL-5862, Environ. Sci. Div. Publ. 1997, Oak Ridge National Laboratory, Oak Ridge, Tenn., 1983.
  • Oren, R., et al., Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere, Nature, 411, 469472, 2001.
  • Osborne, C. P., and D. J. Beerling, Sensitivity of tree growth to a high CO2 environment—Consequences for interpreting the characteristics of fossil woods from ancient “greenhouse” worlds, Palaeogeogr. Palaeoclimatol. Palaeoecol., 182, 1529, 2002.
  • Osborne, C. P., P. L. Mitchell, J. E. Sheehy, and F. I. Woodward, Modelling the recent historical impacts of atmospheric CO2 and climate change on Mediterranean vegetation, Global Change Biol., 6, 445458, 2000.
  • Otto-Bliesner, B. L., and G. R. Upchurch, Vegetation-induced warming of high latitudes during the latest Cretaceous, Nature, 385, 804807, 1997.
  • Parton, W. J., M. Hartman, D. S. Ojima, and D. S. Schimel, DAYCENT and its land surface submodel: Description and testing, Global Planet Change, 19, 3548, 1998.
  • Penman, H. L., Natural evaporation from open water, bare soil and grass, Proc. R. Soc. London, Ser. A, 193, 120145, 1948.
  • Penning de Vries, F. W. T., The cost of maintenance processes in plant cells, Ann. Bot., 39, 7792, 1975.
  • Poorter, H., and R. de Jong, A comparison of specific leaf area, chemical composition and leaf construction costs of field plants from 15 habitats differing in productivity, New Phytol., 143, 163176, 1999.
  • Poorter, H., and R. Villar, The fate of acquired carbon in plants: Chemical composition and construction costs, in Plant Resource Allocation, edited by F. A. Bazzaz, and J. Grace. pp. 3972, Academic, San Diego, Calif., 1997.
  • Raich, J. W., and K. J. Nadelhoffer, Belowground carbon allocation in forest ecosystems: Global trends, Ecology, 70, 13461354, 1989.
  • Raich, J. W., E. B. Rastetter, J. M. Melillo, D. W. Kicklighter, P. A. Steudler, B. J. Peterson, A. L. Grace, B. Moore III, and C. J. Vörösmarty, Potential net primary productivity in South America: Application of a global model, Ecol. Appl., 1, 399429, 1991.
  • Rambal, S., C. Damesin, R. Joffre, M. Méthy, and D. Lo Seen, Optimization of carbon gain in canopies of Mediterranean evergreen oaks, Ann. Sci. For., 53, 547560, 1996.
  • Rapp, M., and A. Cabanettes, Biomass and productivity of a Pinus pineaL. stand, in Components of Productivity of Mediterranean-Climate Regions—Basic and Applied Aspects, edited by N. S. Margaris, and H. A. Mooney, pp. 131134, Dr. W. Junk, Norwell, Mass., 1981.
  • Read, D. J., Mycorrhizas in ecosystems, Experientia, 47, 376391, 1990.
  • Read, J., and J. Francis, Responses of some Southern Hemisphere tree species to a prolonged dark period and their implications for high-latitude Cretaceous and Tertiary floras, Palaeogeogr. Palaeoclimatol. Palaeoecol., 99, 271290, 1992.
  • Reich, P. B., M. B. Walters, and D. S. Ellsworth, Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems, Ecol. Monogr., 62, 365392, 1992.
  • Reich, P. B., T. Koike, S. Gower, and A. W. Schoettle, Causes and consequences of variation in conifer leaf life-span, in Ecophysiology of Coniferous Forests, edited by W. K. Smith, and T. M. Hinckley, pp. 225254, Academic, San Diego, Calif., 1995.
  • Reich, P. B., M. B. Walters, and D. S. Ellsworth, From tropics to tundra: Global convergence in plant functioning, Proc. Natl. Acad. Sci. U. S. A., 94, 13,73013,734, 1997.
  • Reich, P. B., D. S. Ellsworth, and M. B. Walters, Leaf structure (specific leaf area) modulates photosynthesis-nitrogen relations: Evidence from within and across species and functional groups, Funct. Ecol., 12, 948958, 1998a.
  • Reich, P. B., M. B. Walters, D. S. Ellsworth, J. M. Vose, J. C. Volin, C. Gresham, and W. D. Bowman, Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: A test across biomes and functional groups, Oecologia, 114, 471482, 1998b.
  • Reich, P. R., D. S. Ellsworth, M. B. Walters, J. M. Vose, C. Gresham, J. C. Volin, and W. D. Bowman, Generality of leaf trait relationships: A test across six biomes, Ecology, 80, 19551969, 1999.
  • Roderick, M. L., G. D. Farquhar, S. L. Berry, and I. R. Noble, On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation, Oecologia, 129, 2130, 2001.
  • Runyon, J., R. H. Waring, S. N. Goward, and J. M. Welles, Environmental limits on net primary production and light-use efficiency across the Oregon transect, Ecol. Appl., 4, 226237, 1994.
  • Rustad, L. E., J. L. Campbell, G. M. Marion, R. J. Norby, M. J. Mitchell, A. E. Hartley, J. H. C. Cornelissen, J. Gurevitch, and members of GCTE-NEWS, A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming, Oecologia, 126, 543562, 2001.
  • Ryan, M. G., Effects of climate change on plant respiration, Ecol. Appl., 1, 157167, 1991.
  • Ryan, M. G., S. T. Gower, R. M. Hubbard, R. H. Waring, H. L. Gholz, W. P. Cropper, and S. W. Running, Woody tissue maintenance respiration of four conifers in contrasting climates, Oecologia, 101, 133140, 1995.
  • Ryan, M. G., R. M. Hubbard, S. Pongracic, R. J. Raison, and R. E. McMurtrie, Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status, Tree Physiol., 16, 333343, 1996.
  • Schiller, G., and Y. Cohen, Water regime of a pine forest under a Mediterranean climate, Agric. For. Meteorol., 74, 181193, 1995.
  • Schlesinger, W. H., Community structure, dynamics and nutrient cycling in the Okefenokee cypress swamp-forest, Ecol. Monogr., 48, 4365, 1978.
  • Schlesinger, W. H., Biogeochemistry. An analysis of global change, 2nd ed., 588 pp., Academic, San Diego, Calif., 1997.
  • Schulze, E.-D., Plant life forms and their carbon, water and nutrient relations, in Physiological Plant Ecology, III, Water Relations and Carbon Assimilation, edited by O. L. Lange et al., pp. 615676, Springer-Verlag, New York, 1982.
  • Schulze, E.-D., et al., Aboveground biomass and nitrogen nutrition in a chronosequence of pristine Dahurian Larix stands in eastern Siberia, Can. J. For. Res., 25, 943960, 1995.
  • Schulze, E.-D., et al., Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink—A synthesis, Global Change Biol., 5, 703722, 1999.
  • Sellers, P., et al., The Boreal Ecosystem-Atmosphere Study (BOREAS): An overview and early results from the 1994 field year, Bull. Am. Meteorol. Soc., 76, 15491577, 1995.
  • Sellers, P. J., et al., Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate, Science, 271, 14021406, 1996.
  • Seward, A. C., Antarctic fossil plants. British Antarctic (Terra Nova) Expedition 1910, Nat. Hist. Rep. London, Geol., 1(1), 1914.
  • Shaw, R. H., and A. R. Pereira, Aerodynamic roughness of a plant canopy: A numerical experiment, Agric. For. Meteorol., 26, 5165, 1982.
  • Shugart, H. H., Importance of structure in the longer-term dynamics of landscapes, J. Geophys. Res., 105, D20,065D20,075, 2000.
  • Shuttleworth, W. J., and J. S. Wallace, Evaporation from sparse crops—An energy combination theory, Q. J. R. Meteorol. Soc., 111, 839855, 1985.
  • Sollins, P., C. C. Grier, F. M. McCorison, K. Cromack, R. Fogel, and R. L. Frederiksen, The internal element cycles of an old-growth Douglas-Fir ecosystem in western Oregon, Ecol. Monogr., 50, 261285, 1980.
  • Spicer, R. A., and J. L. Chapman, Climate change and the evolution of high-latitude terrestrial vegetation and floras, Trends Ecol. Evol., 5, 279284, 1990.
  • Spicer, R. A., and J. T. Parrish, Palaeobotanical evidence for cool north polar climates in middle Cretaceous (Albanian-Cenomanian) time, Geology, 14, 703706, 1986.
  • Spicer, R. A., and J. T. Parrish, Late Cretaceous-early Tertiary palaeoclimates of northern high latitudes: A quantitative view, J. Geol. Soc., London, 147, 329341, 1990.
  • Steele, S. J., S. T. Gower, J. G. Vogel, and J. M. Norman, Root mass, net primary production and turnover in aspen, jack pine, and black spruce forests in Saskatchewan and Manitoba, Canada, Tree Physiol., 17, 577587, 1997.
  • Striegl, R. G., and K. P. Wickland, Effects of a clear-cut harvest on soil respiration in a jack pine-lichen woodland, Can. J. For. Res., 28, 534539, 1998.
  • Szaniawski, R. K., Growth and maintenance respiration of shoot and roots in Scots Pine seedlings, Zeit. Pflanzenphysiol., 101, 391398, 1981.
  • Tamai, K., T. Abe, M. Araki, and H. Ito, Radiation budget, soil heat flux and latent heat flux at the forest floor in a warm, temperate mixed forest, Hydrol. Process., 12, 21052114, 1998.
  • Taylor, E. L., T. N. Taylor, and N. R. Cuneo, The present is not the key to the past: A polar forest from the Permian of Antarctica, Science, 257, 16751677, 1992.
  • Thomas, S. C., and W. E. Winner, Leaf area index of an old-growth Douglas fir forest estimated from direct structural measurements in the canopy, Can. J For. Res., 30, 19221930, 2000.
  • Thornley, J. H. M., Respiration, growth and maintenance in plants, Nature, 227, 304305, 1970.
  • Thornley, J. H. M., Dynamic model of leaf photosynthesis with acclimation to light and nitrogen, Ann. Bot., 81, 421430, 1998.
  • van Cleve, K., R. Barney, and R. Schlentner, Evidence of temperature control of production and nutrient cycling in two interior Alaska black spruce ecosystems, Can. J. For. Res., 11, 258273, 1981.
  • Vitousek, P. M., and R. W. Howarth, Nitrogen limitation on land and in sea. How can it occur? Biogeochemistry, 13, 87115, 1991.
  • Vogt, K. A., C. C. Grier, and D. J. Vogt, Production, turnover, and nutrient dynamics of above- and below-ground detritus of World forests, Adv. Ecol. Res., 15, 303366, 1986.
  • Vogt, K. A., D. J. Vogt, P. A. Palmiotto, P. Boon, J. O'Hara, and H. Asbjornson, Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species, Plant Soil, 187, 159219, 1996.
  • von Caemmerer, S, Biochemical Models of Leaf Photosynthesis, CSIRO, Melbourne, 2000.
  • Walcroft, A. S., D. Whitehead, W. B. Silvester, and F. M. Kelliher, The response of photosynthetic model parameters to temperature and nitrogen concentration in Pinus radiata D. Don, Plant Cell Environ., 20, 13381348, 1997.
  • Weiss, A., and J. M. Norman, Partitioning solar radiation into direct and diffuse, visible and near-infrared components, Agric. For. Meteorol., 34, 205213, 1985.
  • Weiss, S. B., Vertical and temporal distribution of insolation in gaps in an old-growth coniferous forest, Can. J. For. Res., 30, 19531964, 2000.
  • White, A., M. G. R. Cannell, and A. D. Friend, The high-latitude terrestrial carbon sink: A model analysis, Global Change Biol., 6, 227245, 2000.
  • Williams, E. J., A. Guenther, and S. C. Fehsenfeld, An inventory of nitric oxide emissions from soils in the United States, J. Geophys. Res., 97, 75117519, 1992.
  • Wilson, K. B., D. D. Baldocchi, and P. J. Hanson, Spatial and seasonal variability of photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest, Tree Physiol., 20, 565578, 2000a.
  • Wilson, K. B., P. J. Hanson, and D. D. Baldocchi, Factors controlling evaporation and energy partitioning beneath a deciduous forest over an annual cycle, Agric. For. Meteorol., 102, 83103, 2000b.
  • Wirth, C., et al., Above-ground biomass and structure of pristine Siberian Scots pine forests as controlled by competition and fire, Oecologia, 121, 6680, 1999.
  • Woodward, F. I., Climate and Plant Distribution, 174 pp., Cambridge Univ. Press, New York. 1987.
  • Woodward, F. I., and C. P. Osborne, The representation of root processes in models addressing the responses of vegetation to global change, New Phytol., 147, 223232, 2000.
  • Woodward, F. I., and T. M. Smith, Predictions and measurements of the maximum photosynthetic rate, Amax, at the global scale, in Ecophysiology of Photosynthesis, Ecological. Studies, vol. 100, edited by E. D. Schulze, and M. M. Caldwell, pp. 491509, Springer-Verlag, New York, 1994a.
  • Woodward, F. I., and T. M. Smith, Global photosynthesis and stomatal conductance: Modeling the controls by soils and climate, Adv. Bot. Res., 20, 141, 1994b.
  • Woodward, F. I., T. M. Smith, and W. R. Emanuel, A global land primary productivity and phytogeography model, Global Biogeochem. Cycles, 9, 471490, 1995.