SEARCH

SEARCH BY CITATION

References

  • Allen, C. D., and D. D. Breshears, Drought-induced shift of a forest woodland ecotone: Rapid landscape response to climate variation, Proc. Natl. Acad. Sci. USA, 95, 14,83914,842, 1998.
  • Bachelet, D., J. Lenihan, C. Daly, and R. Neilson, Interactions between fire, grazing and climate change at Wind Cave National Park, SD, Ecol. Modell., 134, 224229, 2000.
  • Bachelet, D., J. Lenihan, C. Daly, R. Neilson, D. Ojima, and W. Parton, MC1: A dynamic vegetation model for estimating the distribution of vegetation and associated ecosystem fluxes of carbon, nutrients, and water, Pac. Northwest Stn. Gen. Tech. Rep. PNW-GTR-508, 95 pp., U.S.D.A. For. Serv., Washington, D. C., 2001a.
  • Bachelet, D., R. P. Neilson, J. M. Lenihan, and R. J. Drapek, Climate change effects on vegetation distribution and carbon budget in the U.S. Ecosystems, 4, 164185, 2001b.
  • Betts, R. A., Offset of the potential carbon sink from boreal forestation by decreases in surface albedo, Nature, 408, 187190, 2000.
  • Boer, G. J., G. M. Flato, M. C. Reader, and D. Ramsden, A transient climate change simulation with historical and projected greenhouse gas and aerosol forcing: experimental design and comparison with the instrumental record for the 20th century, Clim. Dyn., 16, 405425, 1999a.
  • Boer, G. J., G. M. Flato, and D. Ramsden, A transient climate change simulation with historical and projected greenhouse gas and aerosol forcing: Projected climate for the 21st century, Clim. Dyn., 16, 427450, 1999b.
  • Brovkin, V., A. Ganopolski, and Y. Svirezhev, A continuous climate-vegetation classification for use in climate-biosphere studies, Ecol. Modell., 101, 251261, 1997.
  • Casperson, J. P., S. W. Pacala, J. C. Jenkins, G. C. Hutt, P. R. Moorcroft, and R. A. Birdsey, Contributions of land-use history to carbon accumulation in forests, U.S. Science, 290, 1148, 2000.
  • Changnon, S. A., The 1988 drought, barges, and diversion, Bull. Am. Meteorol. Soc., 70, 10921104, 1989.
  • Collatz, G. J., J. T. Ball, C. Grivet, and J. A. Berry, Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer, Agric. For. Meteorol., 54, 107136, 1991.
  • Collatz, G. J., J. T. Ball, C. Grivet, and J. A. Berry, Coupled photosynthesis-stomatal conductance model for leaves of C4 plants, Austral. J. Plant Physiol., 19, 519538, 1992.
  • Cox, P., R. Betts, C. Jones, S. Spall, and I. Totterdell, Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model, Nature, 408, 184187, 2000.
  • Cramer, W., et al., Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models, Global Change Biol., 7, 357373, 2001.
  • Curtis, P. S., and X. S. Wang, A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology, Oecologia, 113, 299313, 1998.
  • Daly, C., D. Bachelet, J. M. Lenihan, R. P. Neilson, W. Parton, and D. Ojima, Dynamic simulation of tree-grass interactions for global change studies, Ecol. Appl., 10, 449469, 2000.
  • Davis, M. B., and C. Zabinski, Changes in geographical range resulting from greenhouse warming: Effects on biodiversity in forests, in Global Warming and Biological Diversity, edited by R. L. Peters, and T. E. Lovejoy, pp. 297308, Yale Univ. Press, New Haven, Conn., 1992.
  • DeLucia, E. H., et al., Net primary production of a forest ecosystem with experimental CO2 enrichment, Science, 284, 11771179, 1999.
  • Diaz, H. F., Some aspects of major dry and wet periods in the contiguous United States, 1895–1981, J. Clim. Appl. Meteorol., 22, 316, 1983.
  • Drake, B. G., M. A. Gonzales-Meler, and S. P. Long, More efficient plants: A consequence of rising atmospheric CO2? Annu. Rev. Plant Physiol. Plant Mol. Biol., 48, 609639, 1997.
  • Ellsworth, D. S., CO2 enrichment in a maturing pine forest: Are CO2 exchange and water status in the canopy affected, Plant Cell Environ., 22, 461472, 1999.
  • Farquhar, G. D., Carbon dioxide and vegetation, Science, 278, 1411, 1997.
  • Farquhar, G. D., S. von Caemmerer, and J. A. Berry, A biochemical model of photosynthetic CO2 assimilation in leaves of C3 plants, Planta, 149, 7890, 1980.
  • Flato, G. M., G. J. Boer, W. G. Lee, N. A. McFarlane, D. Ramsden, M. C. Reader, and A. J. Weaver, The Canadian Center for Climate Modelling and Analysis Global Coupled Model and its climate, Clim. Dyn., 16, 451467, 1999.
  • Foley, J. A., I. C. Prentice, N. Ramankutty, S. Levis, D. Pollard, S. Sitch, and A. Haxeltine, An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics, Global Biogeochem. Cycles, 10, 603628, 1996.
  • Friend, A. D., and A. White, Evaluation and analysis of a dynamic terrestrial ecosystem model under preindustrial conditions at the global scale, Global Biogeochem. Cycles, 14, 11731190, 2000.
  • Friend, A. D., A. K. Stevens, R. G. Knox, and M. G. R. Cannell, A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0), Ecol. Modell., 95, 249287, 1997.
  • Gower, S. T., C. J. Kucharik, and J. M. Norman, Direct and indirect estimation of leaf area index, fapar, and net primary production of terrestrial ecosystems, Remote Sens. Environ., 70, 2951, 1999.
  • Haxeltine, A., and I. C. Prentice, A general model for the light-use efficiency of primary production, Funct. Ecol., 10, 551561, 1996a.
  • Haxeltine, A., and I. C. Prentice, BIOME3: An equilibrium terrestrial biosphere model based on ecophysical constraints, resource availability, and competition among plant functional types, Global Biogeochem. Cycles, 10, 693709, 1996b.
  • Haxeltine, A., I. C. Prentice, and I. D. Creswell, A coupled carbon and water flux model to predict vegetation structure, J. Veg. Sci., 7, 651666, 1996.
  • Houghton, R. A., J. L. Hacker, and K. T. Lawrence, The U.S. carbon budget: Contributions from land-use change, Science, 285, 574578, 1999.
  • Jager, H. I., W. W. Hargrove, C. C. Brandt, A. W. King, R. J. Olson, J. M. O. Scurlock, and K. A. Rose, Constructive contrasts between modeled and measured climate responses over a regional scale, Ecosystems, 3, 396411, 2000.
  • Jarvis, P. G., and K. G. McNaughton, Stomatal control of transpiration: Scaling up from leaf to region, Adv. Ecol. Res., 15, 149, 1986.
  • Johns, T. C., R. E. Carnell, J. F. Crossley, J. M. Gregory, J. F. B. Mitchell, C. A. Senior, S. F. B. Tett, and R. A. Wood, The second Hadley Center coupled ocean-atmosphere GCM: Model description, spinup and validation, Clim. Dyn., 13, 103134, 1997.
  • Karl, T. R., Regional trends and variations of temperature and precipitation, in The Regional Impacts of Climate Change: An Assessment of Vulnerability, edited by R. T. Watson et al., pp. 412425, Cambridge Univ. Press, New York, 1998.
  • Kattenberg, A., et al., Climate models-Projections of future climate, in Climate Change 1995: The Science of Climate Change: Contribution of Working Group 1 to the Second Assessment Report of the Intergovernmental Panel on Climate Change, edited by J. T. Houghton et al., pp. 285357, Cambridge Univ. Press, New York, 1996.
  • Kirilenko, A. P., and A. M. Solomon, Modeling dynamic vegetation response to rapid climate change using bioclimatic classification, Clim. Change, 38, 1549, 1998.
  • Knapp, A. K., and M. D. Smith, Variation among biomes in temporal dynamics of aboveground primary production, Science, 291, 481484, 2001.
  • Kucharik, C. J., J. A. Foley, C. Delire, V. A. Fisher, M. T. Coe, J. D. Lenters, C. Young-Molling, and N. Ramankutty, Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure, Global Biogeochem. Cycles, 14, 795825, 2000.
  • Küchler, A. W., Potential natural vegetation of the conterminous United States, manual to accompany the map, Spec. Publ. 3, 143 pp., Am. Geogr. Soc., New York, 1964.
  • Leenhouts, B., Assessment of biomass burning in the conterminous United States, Conserv. Ecol., 2, 1, 1998. (Available at http://www.consecol.org/vol2/iss1/art1).
  • Lenihan, J. M., C. Daly, D. Bachelet, and R. P. Neilson, Simulating broad-scale fire severity in dynamic global vegetation model, Northwest Sci., 72, 91103, 1998.
  • Linacre, E. T., A simple formula for estimating evaporation rates in various climates, using temperature data alone, Agric. Meteorol., 18, 409424, 1977.
  • Long, S. P., C. P. Osborne, and S. W. Humphries, Photosynthesis, rising atmospheric carbon dioxide concentration and climate change, in Global Change Effects on Coniferous Forests and Grasslands, edited by A. I. Breymeyer et al., pp. 121159, John Wiley, New York, 1996.
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, A Pacific interdecadal climate oscillation with impacts on salmon production, Bull. Am. Meteorol. Soc., 78, 10691079, 1997.
  • Mantua, N. J., P. dell'Arciprete, and R. C. Francis, Patterns of climate variability in the PNW: A regional 20th century perspective, in Impacts of Climate Variability and Climate Change in the Pacific Northwest: An Integrated Assessment, edited by E. D. Miles, report, 110 pp., Pac. Northwest Reg. Assess. Group for the U.S. Global Change Res. Program, Clim. Impacts Group, Univ. of Wash., Seattle, 1999.
  • McGuire, A. D., et al., Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models, Global Biogeochem. Cycles, 15, 182206, 2001.
  • Mitchell, J. F. B., and T. C. Johns, On modification of global warming by sulfate aerosols, J. Clim., 10, 245267, 1997.
  • Monteith, J. L., Accommodation between transpiring vegetation and the convective boundary layer, J. Hydrol., 166, 251263, 1995.
  • National Research Council, Abrupt Climate Change: Inevitable Surprises, Natl. Acad., Washington, D. C., 2002.
  • Neilson, R. P., High-resolution climatic analysis and southwest biogeography, Science, 232, 2734, 1986.
  • Neilson, R. P., A model for predicting continental-scale vegetation distribution and water balance, Ecol. Appl., 5, 362385, 1995.
  • Nigam, S., M. Barlow, and E. H. Berbery, Analysis links Pacific decadal variability to drought and streamflow in the United States, Eos Trans. R. Soc. AGU, 80, 621625, 1999.
  • Oren, R., et al., Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere, Nature, 411, 469472, 2001.
  • Palmer, W. C., Meteorological drought, Res. Pap. 45, 58 pp., U.S. Weather Bur., Washington, D. C., 1965.
  • Pan, Y., et al., Modeled responses of terrestrial ecosystems to elevated atmospheric CO2: A comparison of simulations by the biogeochemistry models of the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP), Oecologia, 114, 389404, 1998.
  • Parton, W. J., D. S. Schimel, C. V. Cole, and D. Ojima, Analysis of factors controlling soil organic levels of grasslands in the Great Plains, Soil Sci. Soc. Am., 51, 11731179, 1987.
  • Parton, W. J., et al., Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide, Global Biogeochem. Cycles, 7, 785809, 1993.
  • Potter, C. S., and S. A. Klooster, Detecting a terrestrial biosphere sink for carbon dioxide: Interannual ecosystem modeling for the mid-1980s, Clim. Change, 42, 489503, 1999.
  • Prentice, I. C., et al., The carbon cycle and atmospheric carbon dioxide, in Climate Change 2001: The Science of Climate Change: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by J. T. Houghton et al., pp. 183239, Cambridge Univ. Press, New York, 2001.
  • Rastetter, E. B., Validating models of ecosystem response to global change, Bioscience, 46, 190198, 1996.
  • Riebsame, W. E., S. A. Changnon, and T. R. Karl, Drought and Natural Resources Management in the United States: Impacts and Implications of the 1987–1989 Drought, pp. 1192, Westview, Boulder, Colo., 1991.
  • Rothermel, R. E., A mathematical model for predicting fire spread in wildland fuels, Res. Pap. INT-115, 40 pp., U.S.D.A. For. Serv., Intermt. For. and Range Exper. Stn., Washington, D. C., 1972.
  • Saxe, H., D. S. Ellsworth, and J. Heath, Tree and forest functioning in an enriched CO2 atmosphere, New Phytol., 139, 395436, 1998.
  • Schimel, D., and B. H. Braswell, Continental scale variability in ecosystem processes: Models, data, and the role of disturbance, Ecol. Monogr., 67, 251271, 1997.
  • Schimel, D., et al., Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States, Science, 287, 20042006, 2000.
  • Shugart, H. H., A Theory of Forest Dynamics, Springer-Verlag, New York, 1984.
  • Sitch, S., The role of vegetation dynamics in the control of atmospheric CO2 content, doctoral dissertation, Inst. of Ecol., Plant Ecol., Lund Univ., Lund, Sweden, 2000.
  • Sitch, S., et al., Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ Dynamic Global Vegetation Model, Global Change Biol., 9, 161185, 2003.
  • Smith, B., I. C. Prentice, and M. T. Sykes, Representation of vegetation dynamics in the modelling of terrestrial ecosystems: Comparing two contrasting approaches within European climate space, Global Ecol. and Biogeogr., 10, 621638, 2001.
  • Thonicke, K., S. Venevsky, S. Sitch, and W. Cramer, The role of fire disturbance for global vegetation dynamics: Coupling fire into a Dynamic Global Vegetation Model, Global Ecol. Biogeogr., 10, 661677, 2001.
  • Torn, M., and J. S. Fried, Predicting the impacts of global warming on wildland fire, Clim. Change, 21, 257274, 1992.
  • Will, R. E., and R. O. Teskey, Effect of irradiance and vapor-pressure deficit on stomatal response to CO2 enrichment of four tree species, J. Exper. Bot., 48, 20952102, 1997.
  • Woodward, F. I., M. R. Lomas, and R. A. Betts, Vegetation-climate feedbacks in a greenhouse world, Philos. Trans. R. Soc. London, Ser. B, 353, 2938, 1998.