SEARCH

SEARCH BY CITATION

References

  • Anderson, L. A., On the hydrogen and oxygen content of marine phytoplankton, Deep Sea Res., Part I, 42, 16751680, 1995.
  • Anderson, L. A., and J. L. Sarmiento, Redfield ratios of remineralization determined by nutrient data analysis, Global Biogeochem. Cycles, 8, 6580, 1994.
  • Bradshaw, A. L., P. G. Brewer, D. K. Shafer, and R. T. Williams, Measurements of total carbon dioxide and alkalinity by potentiometric titration in the GEOSECS program, Earth Planet. Sci. Lett., 55, 99115, 1981.
  • Brewer, P. G., Direct observation of the oceanic CO2 increase, Geophys. Res. Lett., 5, 9971000, 1978.
  • Brewer, P. G., C. Goyet, and G. Friederich, Direct observation of the oceanic CO2 increase revisited, Proc. Natl. Acad. Sci., 94, 83088313, 1997.
  • Broecker, W. S., “NO,” a conservative water-mass tracer, Earth Planet. Sci. Lett., 23, 100107, 1974.
  • Broecker, W. S., and T.-H. Peng, Gas exchange rates between air and sea, Tellus, 26, 2135, 1974.
  • Broecker, W. S., D. W. Spencer, and H. Craig, GEOSECS Pacific Expedition, vol. 3, Hydrographic Data 1973–1974, 137 pp., Natl. Sci. Found., U.S. Gov. Print. Off., Washington, D. C., 1982.
  • Broecker, W. S., T. Takahashi, and T.-H. Peng, Reconstruction of past atmospheric CO2 contents from the chemistry of the contemporary ocean: An evaluation, TR020, DOE/OR-857, 79 pp., U.S. Dep. of Energy, Washington, D.C., 1985.
  • Caldeira, K., and P. B. Duffy, The role of the Southern Ocean in uptake and storage of anthropogenic carbon dioxide, Science, 287, 620622, 2000.
  • Carbon Dioxide Information Analysis Center, Trends Online: A Compendium of Data on Global Change, Oak Ridge Natl. Lab., U.S. Dep. of Energy, Oak Ridge, Tenn., 2001. (Available at http://cdiac.esd.ornl.gov/trends/trends.htm).
  • Chen, C.-T. A., Oceanic penetration of excess CO2 in a cross section between Alaska and Hawaii, Geophys. Res. Lett., 9, 117119, 1982a.
  • Chen, C.-T. A., On the distribution of anthropogenic CO2 in the Atlantic and Southern Oceans, Deep Sea Res., 29, 563580, 1982b.
  • Chen, C.-T. A., On the depth of anthropogenic CO2 penetration in the Atlantic and Pacific Oceans, Oceanol. Acta, 97102, No. sp., 1987.
  • Chen, C.-T. A., Anthropogenic CO2 distribution in the North Pacific Ocean, J. Oceanogr., 49, 257270, 1993a.
  • Chen, C.-T. A., The oceanic anthropogenic CO2 sink, Chemosphere, 27(6), 10411064, 1993b.
  • Chen, C.-T. A., and F. J. Millero, Gradual increase of oceanic CO2, Nature, 277, 205206, 1979.
  • Coatanoan, C., C. Goyet, N. Gruber, C. L. Sabine, and M. Warner, Comparison of two approaches to quantify anthropogenic CO2 in the ocean: Results from the northern Indian Ocean, Global Biogeochem. Cycles, 15, 1125, 2001.
  • Deutsch, C., N. Gruber, R. M. Key, J. L. Sarmiento, and A. Ganachaud, Denitrification and N2 fixation in the Pacific Ocean, Global Biogeochem. Cycles, 15, 483506, 2001.
  • Dickson, A. G., and F. J. Millero, A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep Sea Res., 34, 17331743, 1987.
  • Dickson, A. G., G. C. Anderson, and J. D. Afghan, Sea water based reference materials for CO2 analysis, 1, Preparation, distribution and use, Mar. Chem., in press, 2002a.
  • Dickson, A. G., J. D. Afghan, and G. C. Anderson, Sea water reference materials for CO2 analysis, 2, A method for the certification of total alkalinity, Mar. Chem., in press, 2002b.
  • Dutay, J.-C., et al., Evaluation of ocean model ventilation with CFC-11: Comparison of 13 global ocean models, Ocean Modell. 4, pp. 89120, Hooke Inst., Oxford Univ., Oxford, England, 2002.
  • Feely, R. A., R. Wanninkhof, T. Takahashi, and P. Tans, Influence of El Niño on the equatorial Pacific contribution to atmospheric CO2 accumulation, Nature, 398, 597601, 1999a.
  • Feely, R. A., C. L. Sabine, R. M. Key, and T.-H. Peng, CO2 survey synthesis results: Estimating the anthropogenic carbon dioxide sink in the Pacific Ocean, U. S. JGOFS News, 9(4), 14, 1999b.
  • Goyet, C., and D. Davis, Estimation of total CO2 concentration throughout the water column, Deep Sea Res., Part I, 44, 859877, 1997.
  • Goyet, C., C. Coatanoan, G. Eischeid, T. Amaoka, K. Okuda, R. Healy, and S. Tsunogai, Spatial variation of total CO2 and total alkalinity in the northern Indian Ocean: A novel approach for the quantification of anthropogenic CO2 in seawater, J. Mar. Res., 57, 135163, 1999.
  • Gruber, N., Anthropogenic CO2 in the Atlantic Ocean, Global Biogeochem. Cycles, 12, 165191, 1998.
  • Gruber, N., and J. L. Sarmiento, Global patterns of marine nitrogen fixation and denitrification, Global Biogeochem. Cycles, 11, 235266, 1997.
  • Gruber, N., J. L. Sarmiento, and T. F. Stocker, An improved method for detecting anthropogenic CO2 in the oceans, Global Biogeochem. Cycles, 10, 809837, 1996.
  • Holfort, J., K. M. Johnson, B. Schneider, G. Siedler, and D. W. R. Wallace, Meridional transport of dissolved inorganic carbon in the South Atlantic Ocean, Global Biogeochem. Cycles, 12, 479499, 1998.
  • Inoue, H. Y., H. Matsueda, M. Ishii, K. Fushimi, M. Hirota, I. Asanuma, and Y. Takasugi, Long-term trend of the partial pressure of carbon dioxide (pCO2) in surface waters of the western North Pacific, 1984–1993, Tellus, Ser. B, 47, 391413, 1995.
  • Johnson, G. C., P. E. Robbins, and G. E. Hufford, Systematic adjustments of hydrographic sections for internal consistency, J. Atmos. Oceanic Technol., 18, 12341244, 2001.
  • Karstensen, J., and M. Tomczak, Age determination of mixed water masses using CFC and oxygen data, J. Geophys. Res., 103, 18,59918,610, 1998.
  • Keeling, C. D., and T. P. Whorf, Atmospheric CO2 records from sites in the SIO air sampling network, in Trends: A Compendium of Data on Global Change, Carbon Dioxide Info. Anal. Cent., Oak Ridge Natl. Lab., U.S. Dep. of Energy, Oak Ridge, Tenn., 2000.
  • Körtzinger, A., M. Rhein, and L. Mintrop, Anthropogenic CO2 and CFCs in the North Atlantic Ocean—A comparison of man-made tracers, Geophys. Res. Lett., 26, 20652068, 1999.
  • Krumgalz, B. S., J. Erez, and C.-T. A. Chen, Anthropogenic CO2 penetration in the northern Red Sea and in the Gulf of Elat (Aqaba), Oceanol. Acta, 13(3), 283290, 1990.
  • Lamb, M. F., et al., Consistency and synthesis of Pacific Ocean CO2 survey data, Deep Sea Res., Part II, 49, 2158, 2002.
  • Merhbach, C., C. H. Culberson, J. E. Hawley, and R. M. Pytkowicz, Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure, Limnol. Oceanogr., 18, 897907, 1973.
  • Ono, T., S. Watanabe, K. Okuda, and M. Fukasawa, Distribution of total carbonate and related properties in the North Pacific along 30°N, J. Geophys. Res., 103, 30,87330,883, 1998.
  • Ono, T., Y. W. Watanabe, and S. Watanabe, Recent increase of DIC in the western North Pacific, Mar. Chem., 72, 317328, 2000.
  • Orr, J. C., et al., Global oceanic uptake of anthropogenic carbon dioxide as predicted by four 3-D ocean models, Global Biogeochem. Cycles, 15, 4360, 2001.
  • Papaud, A., and A. Poisson, Distribution of dissolved CO2 in the Red Sea and correlation with other geochemical tracers, J. Mar. Res., 44, 385402, 1986.
  • Pérez, F. F., L. Mintrop, O. Llinás, M. Glez-Dávila, C. G. Castro, M. Alvarez, A. Körtzinger, M. Santana-Casiano, M. J. Rueda, and A. F. Ríos, Mixing analysis of nutrients, oxygen and inorganic carbon in the Canary Islands region, J. Mar. Syst., 28, 183201, 2001.
  • Poisson, A., and C.-T. A. Chen, Why is there little anthropogenic CO2 in the Antarctic Bottom Water? Deep Sea Res., Part A, 34, 12551275, 1987.
  • Quay, P. D., B. Tilbrook, and C. S. Wong, Oceanic uptake of fossil fuel CO2: Carbon-13 evidence, Science, 256, 7479, 1992.
  • Reid, J. L., On the total geostrophic circulation of the Pacific Ocean: Flow patterns, tracers, and transports, Prog. Oceanogr., 39, 263352, 1997.
  • Rintoul, S. R., On the origin and influence of Adelie Land Bottom Water, in Ocean, Ice, and Atmosphere: Interactions at the Continental Margin, Antarct. Res. Ser: Phys. Sci., vol. 75, edited by S. S. Jacobs, and R. F. Weiss, pp. 151171, AGU, Washington, D. C., 1998.
  • Rintoul, S. R., and J. L. Bullister, A late winter hydrographic section from Tasmania to Antarctica, Deep Sea Res., 46, 14171454, 1999.
  • Rubin, S., and R. M. Key, Separating natural and bomb-produced radiocarbon in the ocean: The potential alkalinity method, Global Biogeochem. Cycles, doi:10.1029/2001GB001432, in press, 2002.
  • Sabine, C. L., and R. A. Feely, Comparison of recent Indian Ocean anthropogenic CO2 estimates with a historical approach, Global Biogeochem. Cycles, 15, 3142, 2001.
  • Sabine, C. L., R. M. Key, K. M. Johnson, F. J. Millero, A. Poisson, J. L. Sarmiento, D. W. R. Wallace, and C. D. Winn, Anthropogenic CO2 inventory of the Indian Ocean, Global Biogeochem. Cycles, 13, 179198, 1999.
  • Sambrotto, R. N., G. Savidge, C. Robinson, P. Boyd, T. Takahashi, D. M. Karl, C. Langdon, D. Chipman, J. Marra, and L. Codispoti, Elevated consumption of carbon relative to nitrogen in the surface ocean, Nature, 363, 248250, 1993.
  • Sarmiento, J. L., J. Willebrand, and S. Hellerman, Objective analysis of tritium observations in the Atlantic Ocean during 1971–74, Tech Rep. 1, 19 pp., Ocean Tracers Lab., Princeton Univ., Princeton, N. J., July 1982.
  • Shiller, A. M., Calculating the oceanic CO2 increase: A need for caution, J. Geophys. Res., 86, 11,08311,088, 1981.
  • Slansky, C. M., R. A. Feely, and R. Wanninkhof, The stepwise linear regression method for calculating anthropogenic CO2 invasion into the North Pacific Ocean, in Biogeochemical Processes in the North Pacific: Proceedings of the International Marine Science Symposium, edited by S. Tsunogai, pp. 7079, Jap. Mar. Sci. Found., Tokyo, 1997.
  • Stuiver, M., P. D. Quay, and H. G. Ostlund, Abyssal water carbon-14 distribution and the age of the world oceans, Science, 219, 849851, 1983.
  • Takahashi, T., R. H. Wanninkhof, R. A. Feely, R. F. Weiss, D. W. Chipman, N. Bates, J. Olafsson, C. Sabine and S. C. Sutherland, Net air-sea CO2 flux over global oceans: An improved estimate based on sea-air pCO2 difference, in Proceedings of 2nd International Symposium on CO2 in the Oceans, CGER-IO37-99, pp. 915, CGER/NIES, Tsukuba, Japan, 1999.
  • Tomczak, M., A multi-parameter extension of temperature/salinity diagram techniques for the analysis of non-isopycnal mixing, Prog. Oceanogr., 10, 147171, 1981.
  • Tomczak, M., and D. G. B. Large, Optimum multiparameter analysis of mixing in the thermocline of the eastern Indian Ocean, J. Geophys. Res., 94, 16,14116,149, 1989.
  • Tsunogai, S., T. Ono, and S. Watanabe, Increase in total carbonate in the western North Pacific water and a hypothesis on the missing sink of anthropogenic carbon, J. Oceanogr., 49, 305315, 1993.
  • Wallace, D. W. R., Storage and transport of excess CO2 in the oceans: The JGOFS/WOCE Global CO2 Survey, in Ocean Circulation and Climate: Observing and Modelling the Global Ocean, edited by G. Siedler, J. Church, and J. Gould, pp. 489521, Academic, San Diego, Calif., 2001.
  • Wanninkhof, R., S. C. Doney, T.-H. Peng, J. L. Bullister, K. Lee, and R. A. Feely, Comparison of methods to determine the anthropogenic CO2 invasion into the Atlantic Ocean, Tellus, Ser. B, 51, 511530, 1999.
  • Warner, M. J., J. L. Bullister, D. P. Wisegarver, R. H. Gammon, and R. F. Weiss, Basin-wide distributions of chlorofluorocarbons CFC-11 and CFC-12 in the North Pacific: 1985–1989, J. Geophys. Res., 101, 20,52520,542, 1996.
  • Watanabe, Y. W., T. Ono, and A. Shimamoto, Increase in the uptake rate of oceanic anthropogenic carbon in the North Pacific determined by CFC ages, Mar. Chem., 72, 297315, 2000.
  • Winn, C. D., Y.-H. Li, F. T. Mackenzie, and D. M. Karl, Rising surface ocean dissolved inorganic carbon at the Hawaii Ocean Time-series site, Mar. Chem., 60, 3347, 1998.
  • Xu, Y., Y. W. Watanabe, S. Aoki, and K. Harada, Simulations of storage of anthropogenic carbon dioxide in the North Pacific using an ocean general circulation model, Mar. Chem., 72, 221238, 2000.
  • You, Y., and M. Tomczak, Thermocline circulation and ventilation in the Indian Ocean derived from water mass analysis, Deep Sea Res., 40, 1356, 1993.