• Osmium;
  • isotopes;
  • PGE;
  • rhenium;
  • continental crust;
  • loess

[1] We investigate the use of loess as a proxy for the concentration and isotopic composition of highly siderophile elements, specifically Os, in the upper continental crust. The 187Os/188Os, platinum group element, and Re concentrations of 16 loess samples from China, Europe, and South America, previously analyzed for major, trace element, and Sr and Nd isotope composition, reveal subtle differences between loess provinces. Despite those differences, the 187Os/188Os of 1.05 ± 0.23 is surprisingly homogenous. Average 187Os/188Os as well as average Os (31 pg/g) and Ir (22 pg/g) concentrations are similar to the lower limit of previous estimates for average upper continental crust, whereas Ru, Pt, and Pd concentrations are intermediate between previous estimates. We argue that hydrogenous enrichment of Os in riverine sediments led Esser and Turekian [1993] to overestimate the Os concentration of upper continental crust (50 pg/g). On the basis of this argument and correlations with major and trace elements we propose that average platinum group element concentrations of loess (i.e., 31 pg Os/g, 22 pg Ir/g, 210 pg Ru/g, 510 pg Pt/g, 520 pg Pd/g) are a proxy for the upper continental crust. We further suggest that the nonchondritic average Os/Ir of 1.4 reflects the combined effects of radiogenic ingrowth of Os from Re decay over the mean lifetime of the upper continental crust and preferential return of Os to the crust during subduction. Rhenium concentrations scatter significantly, with highest values in loess derived from organic-rich sedimentary rocks. Low median Re concentrations most likely reflect depletion of loess in organic matter, an important sink for Re in the upper continental crust. An average 187Re/188Os of 34.5 was calculated on the basis of the measured 187Os/188Os and Nd model ages. This value corresponds to a Re concentration of 198 pg/g. Correcting measured 187Os/188Os = 1.05 and inferred 186Os/188Os = 0.119871 (from 190Pt/188Os = 0.0176) for the older mean age (2.2 Gyr) of upper continental crust compared to loess (1.6 Gyr) yields average upper crustal 187Os/188Os of 1.40 and 186Os/188Os of 0.119885.