SEARCH

SEARCH BY CITATION

References

  • Baker, D. R., and D. H. Eggler, Compositions of anhydrous melts coexisting with plagioclase, augite and olivine or low-Ca pyroxene from 1 atm to 8 kbar: Application to the Aleutian volcanic center of Atka, Am. Mineral., 72, 1228, 1987.
  • Baker, M. B., and E. M. Stolper, Determination of high-pressure mantle melts using diamond aggregates, Geochim. Cosmochim. Acta, 58, 28112827, 1994.
  • Baker, M. B., M. M. Hirschmann, M. S. Ghiorso, and E. M. Stolper, Compositions of near-solidus peridotite melts from experiments and calculations, Nature, 375, 308311, 1995.
  • Blundy, J. D., T. J. Falloon, B. J. Wood, and J. A. Dalton, Sodium partitioning between clinopyroxene and silicate liquids, J. Geophys. Res., 100, 15,50115,515, 1995.
  • Bohlen, S. R., and A. L. Boettcher, The quartz = coesite transformation: A precise determination and the effects of other components, J. Geophys. Res., 87, 70737078, 1982.
  • Bose, K., and J. Ganguly, Experimental and theoretical studies of the stability of talc, antigorite, and phase A at high pressures with applications to subduction processes, Earth Planet. Sci. Lett., 136, 109121, 1995.
  • Draper, D. S., and T. H. Green, P-T phase relations of silicic, alkaline, aluminous liquids; New results and applications to mantle melting and metasomatism, Earth Planet. Sci. Lett., 170, 255268, 1999.
  • Eggler, D. H., The effect of CO2 upon partial melting of peridotite in the system Na2O-CaO-MgO-Al2O3-SiO2-CO2 to 35 kb, with an analysis of melting in a peridotite-H2O-CO2 system, Am. J. Sci., 278, 305343, 1978.
  • Falloon, T. F., and D.H. Green, Anhydrous partial melting of peridotite from 8 to 35 kb and the petrogenesis of MORB, J. Petrol., Special Lithosphere Issue, 379414, 1988.
  • Fram, M. S., and J. Longhi, Phase equilibria of dikes associated with Proterozoic anorthosite complexes, Am. Mineral., 77, 605616, 1992.
  • Gaetani, G., and T. L. Grove, The influence of water on melting of mantle peridotite, Contrib. Mineral. Petrol., 131, 323346, 1998.
  • Gasparik, T., Two-pyroxene thermobarometry with new experimental data in the system CaO-MgO-Al2O3-SiO2, Contrib. Mineral. Petrol., 87, 8797, 1984.
  • Grove, T. L., and R. Juster, Experimental investigation of low-Ca pyroxene stability and olivine-plagioclase-liquid equilibrium at 1-atm in natural basaltic and andesitic liquids, Contrib. Mineral. Petrol., 103, 287305, 1989.
  • Grove, T. L., D. C. Gerlach, and T. W. Sando, Origin of calc-alkaline series lavas at Medicine Lake volcano by fractionation, assimilation and mixing, Contrib. Mineral. Petrol., 80, 160182, 1982.
  • Gudfinnsson, G. H., and D. C. Presnall, Melting relations of model lherzolite in the system CaO-MgO-Al2O3-SiO2 at 2.4–3.4 GPa and the generation of komatiites, J. Geophys. Res., 101, 27,70127,709, 1996.
  • Harlow, G. E., K in clinopyroxene at high pressure and temperature: An experimental study, Am. Mineral., 82, 259269, 1997.
  • Hart, S. R., and A. Zindler, In search of a bulk-Earth composition, Chem. Geol., 57, 247267, 1986.
  • Herzberg, C. T., Stability fields of plagioclase- and spinel-lherzolite, in Progress in Experimental Petrology, Second Progress Report, pp. 145148, Natl. Environ. Res. Counc., Swindon, U. K., 1972.
  • Hirose, K., and I. Kushiro, Partial melting of dry peridotite at high pressures: Determination of composition of melts segregated from peridotite using aggregates of diamond, Earth Planet. Sci. Lett., 114, 477489, 1993.
  • Hirschmann, M. M., M. B. Baker, and E. M. Stolper, The effect of alkalis on the silica content of mantle-derived melts, Geochim. Cosmochim. Acta, 62, 883902, 1998.
  • Kinzler, R. J., Melting of mantle peridotite at pressures approaching the spinel to garnet transition: application to mid-ocean ridge basalt petrogenesis, J. Geophys. Res., 102, 853874, 1997.
  • Kinzler, R. J., and T. L. Grove, Primary magmas of mid-ocean ridge basalts, 2, Applications, J. Geophys. Res., 97, 69076926, 1992a.
  • Kinzler, R. J., and T. L. Grove, Primary magmas of mid-ocean ridge basalts, 1, Experiments and methods, J. Geophys. Res., 97, 69076926, 1992b.
  • Klein, E. M., and C. H. Langmuir, Global correlation of ocean ridge basalt chemistry with axial depth and crustal thickness, J. Geophys. Res., 92, 80898115, 1987.
  • Klemme, S., and H. St.-C. O'Neill, The near-solidus transition from garnet lherzolite to spinel lherzolite, Contrib. Mineral. Petrol., 138, 237248, 2000.
  • Kushiro, I., The system MgSiO3–CaSiO3 at 20 kilobars, Year Book Carnegie Inst. Washington, 63, 104105, 1964.
  • Kushiro, I., Partial melting of a fertile mantle peridotite at high pressures: An experimental study using diamond aggregate, Earth Processes: Reading the Isotopic Code, Geophys. Mon. Ser., vol. 95, edited by A. Basu, and S. Hart, pp. 109122, AGU, Washington, D.C., 1996.
  • Kushiro, I., and H. S. Yoder, Anorthite-forsterite and anorthite-enstatite reactions and their bearing on the basalt-eclogite transformation, J. Petrol., 7, 337362, 1966.
  • Langmuir, C. H., E. M. Klein, and T. Plank, Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges, in Mantle Flow and Melt Generation at Mid-Ocean Ridges, Geophys. Monogr. Ser., vol. 71, edited by J. Phipps-Morgan et al., pp. 183280, AGU, Washington, D.C., 1992.
  • Longhi, J., Liquidus equilibria and solid solution in the system Anorthite-Forsterite-Wollastonite-Silica at low pressure, Am. J. Sci., 287, 265331, 1987.
  • Longhi, J., Comparative liquidus equilibria of hypersthene-normative basalts at low pressure, Am. Mineral., 76, 785800, 1991.
  • Longhi, J., Origin of green glass magmas by polybaric fractional fusion, Proc. Lunar Planet Sci., 22, 343353, 1992.
  • Longhi, J., Liquidus equilibria of some primary lunar and terrestrial melts in the garnet stability field, Geochim. Cosmochim. Acta, 59, 23752386, 1995.
  • Longhi, J., Compositional and phase equilibria systematics of primary melts, Eos Trans AGU, 80(46), Fall Meet. Suppl., F1112, 1999.
  • Longhi, J., and M. B. Baker, The spinel/garnet transition in CMAS, Eos Trans AGU, 80(17), Fall Meet. Suppl., S379, 1999.
  • Longhi, J., and C. M. Bertka, Graphical analysis of pigeonite-augite liquidus equilibria, Am. Mineral., 81, 681695, 1996.
  • Longhi, J., and V. Pan, A reconnaissance study of phase boundaries in low-alkali basaltic liquids, J. Petrol., 29, 115148, 1988.
  • Longhi, J., and V. Pan, The parent magmas of the SNC meteorites, Proc. Lunar Planet. Sci. Conf., 19th, 451464, 1989.
  • Longhi, J., D. Walker, and J. F. Hays, Fe and Mg distribution between olivine and lunar basaltic liquids, Geochim. Cosmochim. Acta, 42, 15451588, 1978.
  • Longhi, J., J. Vander Auwera, M. S. Fram, and J. C. Duchesne, Some phase equilibrium constraints on the origin of Proterozoic (massif) anorthosites and related rocks, J. Petrol., 40, 153166, 1999.
  • McKenzie, D., The generation and compaction of partially molten rock, J. Petrol., 25, 713765, 1984.
  • O'Hara, M. J., The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks, Earth Sci. Rev., 4, 69113, 1968.
  • O'Hara, M. J., S. W. Richardson, and G. Wilson, Garnet-peridotite stability and occurrence in crust and mantle, Contrib. Mineral. Petrol., 32, 4868, 1971.
  • Pickering-Witter, J., and A. D. Johnston, The effects of variable composition on the melting systematics of fertile peridotite assemblages, Contrib. Mineral. Petrol., 140, 190211, 2000.
  • Presnall, D. C., J .R. Dixon, T. H. O'Donnell, and S. A. Dixon, Generation of mid-ocean ridge tholeiites, J. Petrol., 20, 335, 1979.
  • Putirka, K., M. C. Johnson, R. J. Kinzler, J. Longhi, and D. Walker, Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0—30 kb, Contrib. Mineral. Petrol., 123, 92108, 1996.
  • Robinson, J. A. C., B. J. Wood, and J. D. Blundy, The beginning of melting of fertile and depleted peridotite, Earth Planet. Sci. Lett., 155, 97111, 1998.
  • Salters, V. J. M., J. E. Longhi, M. Bizimis, Near mantle solidus trace element partitioning at pressures up to 3.4 GPa, Geochem. Geophys. Geosyst., in press, 2002.
  • Sessler, R., P. C. Hess, and M. J. Rutherford, Liquidus relations in the forsterite-silica-anorthite-albite system at 1 atm (abstract), in Lunar and Planetary Science XIII, pp. 710–711, Lunar and Planet. Sci. Inst., Houston, Tex., 1982.
  • Takahashi, E., Melting of a dry peridotite to KLB-1 up to 14 GPa: Implications on the origin of peridotitic upper mantle, J. Geophys. Res., 91, 93679382, 1986.
  • Takahashi, E., and I. Kushiro, Melting of a dry peridotite at high pressures and basalt petrogenesis, Am. Mineral., 68, 859879, 1983.
  • Walker, D., T. Shibata, and S. E. DeLong, Abyssal tholeiites from the Oceanographer Fracture Zone II: Phase equilibria and mixing, Contrib. Mineral. Petrol., 70, 111125, 1979.
  • Walter, M. J., Melting of garnet peridotite and the origin of komatiite and depleted lithosphere, J. Petrol., 39, 2960, 1998.
  • Walter, M. J., and D. C. Presnall, Melting behavior of simplified lherzolite in the system CaO–MgO–Al2O3–SiO2–Na2O from 7 to 35 kbar, J. Petrol., 35, 329359, 1994.
  • Zhang, J., and C. Herzberg, Melting experiments on anhydrous peridotite KLB-1 from 5.0 to 22.5 Gpa, J. Geophys. Res., 99, 17,72917,742, 1994.