SEARCH

SEARCH BY CITATION

References

  • Adams, J. M., H. Faure, L. Faure-Denard, J. M. McGlade, and F. I. Woodward, Increases in terrestrial carbon storage from the Last Glacial Maximum to the present, Nature, 348, 711714, 1990.
  • Archer, D., Modeling the calcite lysocline, J. Geophys. Res., 96, 17,03717,050, 1991.
  • Archer, D. E., G. Eshel, A. Winguth, W. Broecker, R. Pierrehumbert, M. Tobis, and R. Jacob, Atmospheric pCO2 sensitivity to the biological pump in the ocean, Global Biogeochem. Cycles, 14, 12191230, 2000a.
  • Archer, D., A. Winguth, D. Lea, and N. Mahowald, What caused the glacial/interglacial atmospheric CO2 cycles? Rev. Geophys., 38, 159189, 2000b.
  • Bainbridge, A. E., GEOSECS Atlantic Expedition, vol. 1, Hydrographic Data 1972–1973, 121 pp. , Natl. Sci. Foundation, Washington, D.C., 1981.
  • Barnola, J. M., D. Raynaud, Y. S. Korotkevich, and C. Lorius, Vostok ice core provides 160,000-year record of atmospheric CO2, Nature, 329, 408414, 1987.
  • Battle, M., M. L. Bender, P. P. Tans, J. W. C. White, J. T. Ellis, T. Conway, and R. J. Francey, Global carbon sinks and their variability inferred from atmospheric O2 and δ13C, Science, 287, 24672470, 2000.
  • Beerling, D. J., New estimates of carbon transfer to terrestrial ecosystems between the last glacial maximum and the Holocene, Terra Nova, 11, 162167, 1999.
  • Berger, A., Orbital variations, in Encyclopaedia of Climate and Weather, edited by S. Schneider, pp. 557564, Oxford Univ. Press, New York, 1996.
  • Bird, M. I., J. Lloyd, and G. D. Farquhar, Terrestrial carbon-storage from the last glacial maximum to the present, Chemosphere, 33, 16751685, 1996.
  • Boyd, P. W., et al., A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization, Nature, 407, 695702, 2000.
  • Broecker, W. S., and G. M. Henderson, The sequence of events surrounding Termination II and their implications for the cause of glacial-interglacial CO2 changes, Paleoceanography, 13, 352364, 1998.
  • Broecker, W. S., and T. H. Peng, Tracers in the Sea, Lamont-Doherty Geological Observatory of Columbia University, Palisades, New York, 1982.
  • Broecker, W. S., D. W. Spenger, and H. Craig, GEOSECS Pacific Expedition, vol. 3, Hydrographic data 1973–1974, 173 pp., Natl. Sci. Foundation, Washington, D.C., 1982.
  • Broecker, W. S., E. Clark, D. C. McCorkle, T.-H. Peng, I. Hajdas, and G. Bonani, Evidence for a reduction in the carbonate ion content of the deep sea during the course of the Holocene, Paleoceanography, 14, 744752, 1999.
  • Brovkin, V., et al., Carbon cycle, vegetation, and climate dynamics in the Holocene: Experiments with the CLIMBER-2 model, Global Biogeochem. Cycles, in press, 2002.
  • Ciais, P., P. P. Tans, M. Trolier, J. W. C. White, and R. J. Francey, A large northern hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2, Science, 269, 10981102, 1995.
  • Claussen, M., A. Ganopolski, C. Kubatzki, V. Petoukhov, and S. Rahmstorf, A new model for climate system analysis: Outline of the model and application to paleoclimate simulations, Environ. Modell. Assess., 4, 209216, 1999.
  • Crowley, T. J., Ice age terrestrial carbon changes revisited, Global Biogeochem. Cycles, 9, 377389, 1995.
  • Elderfield, H., and R. E. M. Rickaby, Oceanic Cd/P ratio and nutrient utilization in the glacial Southern Ocean, Nature, 405, 305310, 2000.
  • Francois, L. M., Y. Godderis, P. Warnant, G. Ramstein, N. de Noblet, and S. Lorenz, Carbon stocks and isotopic budgets of the terrestrial biosphere at mid-Holocene and last glacial maximum times, Chem. Geol., 159, 163189, 1999.
  • Gajewski, K., A. Viau, M. Sawada, D. Atkinson, and S. Wilson, Sphagnum peatland distribution in North America and Eurasia during the past 21,000 years, Global Biogeochem. Cycles, 15, 297310, 2001.
  • Ganopolski, A., and S. Rahmstorf, Simulation of rapid glacial climate changes in a coupled climate model, Nature, 409, 153158, 2001.
  • Ganopolski, A., S. Rahmstorf, V. Petoukhov, and M. Claussen, Simulation of modern and glacial climates with a coupled global climate model, Nature, 391, 350356, 1998.
  • Ganopolski, A., V. Petoukhov, S. Rahmstorf, M. Claussen, A. Eliseev, and C. Kubatzki, CLIMBER-2: A climate system model of intermediate complexity. Part II: Validation and sensitivity tests, Clim. Dyn., 17, 735751, 2001.
  • Goericke, R., and B. Fry, Variations of marine plankton δ13C with latitude, temperature, and dissolved CO2 in the world ocean, Global Biogeochem. Cycles, 8, 8590, 1994.
  • Guiot, J., I. C. Prentice, C. Peng, D. Jolly, F. Laarif, and B. Smith, Reconstructing and modelling past changes in terrestrial primary production, in Terrestrial Global Productivity, edited by J. Roy, H. A. Mooney, and B. Saugier, pp. 479498, Academic, San Diego, Calif., 2001.
  • Harrison, K. G., Role of increased marine silica input on paleo-pCO2 levels, Paleoceanography, 15, 292298, 2000.
  • Hofmann, M., W. S. Broecker, and J. Lynch-Stieglitz, Influence of a [CO2(aq)] dependent biological C-isotope fractionation on glacial 13C/12C ratios in the ocean, Global Biogeochem. Cycles, 13, 873883, 1999.
  • Hofmann, M., D. A. Wolf-Gladrow, T. Takahashi, S. C. Sutherland, K. D. Six, and E. Maier-Reimer, Stable isotope composition of particulate organic matter in the ocean: A model study, Mar. Chem., 72, 131150, 2000.
  • Imbrie, J., N. J. Shackleton, N. G. Pisias, J. J. Morley, W. L. Prell, D. G. Martinson, J. D. Hays, A. McIntyre, and A. C. Mix, The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record, in Milankovitch and Climate: Understanding the Response to Astronomical Forcing, Part I, edited by A. Berger et al., pp. 269305, D. Reidel Publ., Norwell, Mass., 1984.
  • Joos, F., and M. Bruno, Long-term variability of the terrestrial and oceanic carbon sinks and the budgets of the carbon isotopes 13C and 14C, Global Biogeochem. Cycles, 12, 277295, 1998.
  • Kroopnik, P. M., The distribution of 13C of ΣCO2 in the world oceans, Deep Sea Res., 32, 5784, 1985.
  • Laine, J., J. Silvola, K. Tolonen, J. Alm, H. Nykanen, H. Vasander, T. Sallantaus, I. Savolainen, J. Sinisalo, and P. J. Martikainen, Effect of water-level drawdown on global climatic warming: Northern peatlands, Ambio, 25, 179184, 1996.
  • Leuenberger, M., U. Siegenthaler, and C. C. Langway, Carbon isotope composition of atmospheric CO2 during the last ice age from an Antarctic ice core, Nature, 357, 488490, 1992.
  • Lloyd, J., and G. D. Farquhar, 13C discrimination during CO2 assimilation by the terrestrial biosphere, Oecologia, 99, 201215, 1994.
  • Maier-Reimer, E., U. Mikolajewicz, and A. Winguth, Future ocean uptake of CO2: interaction between ocean circulation and biology, Clim. Dyn., 12, 711721, 1996.
  • Maqueda, M. M., and S. Rahmstorf, Did Antarctic sea-ice expansion cause glacial CO2 decline? Geophys. Res. Lett., 29, 4143, 2002.
  • Marino, B. D., M. B. Mcelroy, R. J. Salawitch, and W. G. Spaulding, Glacial-to-interglacial variations in the carbon isotopic composition of atmospheric CO2, Nature, 357, 461466, 1992.
  • Martin, J. H., Glacial-interglacial CO2 change: The iron hypothesis, Paleoceanography, 5, 113, 1990.
  • Maslin, M. A., J. Adams, E. Thomas, H. Faure, and R. Hainesyoung, Estimating the carbon transfer between the ocean, atmosphere and the terrestrial biosphere since the last glacial maximum, Terra Nova, 7, 358366, 1995.
  • Mayewski, P. A., et al., Climate Change During the Last Deglaciation in Antarctica, Science, 272, 16361638, 1996.
  • Melillo, J. M., et al., Terrestrial biotic responses to environmental change and feedbacks to climate, in Climate Change 1995: The Science of Climate Change, edited by J. T. Houghton et al., pp. 449481, Cambridge Univ. Press, New York, 1996.
  • Milliman, J. D., Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state, Global Biogeochem. Cycles, 7, 927957, 1993.
  • Monnin, E., A. Indermühle, A. Dällenbach, J. Flückiger, B. Stauffer, T. F. Stocker, D. Raynaud, and J.-M. Barnola, Atmospheric CO2 concentrations over the last glacial termination, Science, 291, 112114, 2001.
  • Mook, W. G., J. C. Bommerson, and W. H. Staverman, Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide, Earth Planetary Sci. Lett., 22, 169176, 1974.
  • Peltier, W. R., Ice age paleotopography, Science, 265, 195201, 1994.
  • Petit, J. R., L. Mounier, J. Jouzel, Y. Korotkevitch, V. Kotlyakov, and C. Lorius, Paleoclimatological implications of the Vostok core dust record, Nature, 343, 5658, 1990.
  • Petoukhov, V., A. Ganopolski, M. Claussen, A. Eliseev, C. Kubatzki, and S. Rahmstorf, CLIMBER-2: A climate system model of intermediate complexity, Part I, Model description and performance for present climate, Clim. Dyn., 16, 117, 2000.
  • Prentice, I. C., M. T. Sykes, M. Lautenschlager, S. P. Harrison, O. Denissenko, and P. J. Bartlein, Modelling the increase in terrestrial carbon storage after the last glacial maximum, Global Ecol. Biogeography Lett., 3, 6776, 1994.
  • Rau, G. H., T. Takahashi, and D. J. D. Marais, Latitudional variations in planktonic δ13C: Implications for CO2 and productivity in past oceans, Nature, 341, 516518, 1989.
  • Schulz, M., D. Seidov, M. Sarnthein, and K. Stattegger, Modeling ocean-atmosphere carbon budgets during the Last Glacial Maximum—Heinrich 1 meltwater event—Bølling transition, Int. J. Earth Sci. (Geol. Rundsch), 90, 412415, 2001.
  • Shackleton, N. J., Carbon-13 in Uvigerina: Tropical rainforest history and the equatorial Pacific carbonate dissolution cycles, in The Fate of Fossil Fuel CO2 in the Oceans, edited by N. R. Andersen, and A. Malahoff, pp. 401428, Plenum, New York, 1977.
  • Shaffer, G., A non-linear climate oscillator controlled by biogeochemical cycling in the ocean: an alternative model of Quaternary ice age cycles, Clim. Dyn., 4, 127143, 1990.
  • Siegenthaler, U., and K. O. Münnich, 13C/12C fractionation during CO2 transfer from air to sea, In Carbon Cycle Modelling, edited by B. Bolin, pp. 249257, John Wiley, New York, 1981.
  • Sigman, D. M., and E. A. Boyle, Glacial/interglacial variations in atmospheric carbon dioxide, Nature, 407, 859869, 2000.
  • Sigman, D. M., D. C. McCorkle, and W. R. Martin, The calcite lysocline as a constraint on glacial/interglacial low-latitude production changes, Global Biogeochem. Cycles, 12, 409427, 1998.
  • Six, K. D., and E. Maier-Reimer, Effects of plankton dynamics on seasonal carbon fluxes in an ocean general circulation model, Global Biogeochem. Cycles, 10, 559583, 1996.
  • Smetacek, V., EisenEx: International team conducts iron experiment in the Southern Ocean, U.S. JGOFS Newsletter, 11, 1114, 2001.
  • Smith, H. J., H. Fischer, M. Wahlen, D. Mastroianni, and B. Deck, Dual modes of the carbon cycle since the Last Glacial Maximum, Nature, 400, 248250, 1999.
  • Stephens, B. B., and R. F. Keeling, The influence of Antarctic sea ice on glacial-interglacial CO2 variations, Nature, 404, 171174, 2000.
  • Tans, P. P., J. A. Berry, and R. F. Keeling, Oceanic 13C/12C observations: a new window on ocean CO2 uptake, Glob. Biogeochem. Cycles, 7, 353368, 1993.
  • Treguer, P., and P. Pondaven, Global change: Silica control of carbon dioxide, Nature, 406, 358359, 2000.
  • Volk, T., and M. I. Hoffert, Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes, in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophys. Monogr. Ser., vol. 32, edited by E. T. Sunquist, and W. S. Broecker, pp. 99110, AGU, Washington, D. C., 1985.
  • Watson, A. J., D. C. E. Bakker, A. J. Ridgwell, P. W. Boyd, and C. S. Law, Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2, Nature, 407, 730733, 2000.
  • Zhang, J., P. D. Quay, and D. O. Wilbur, Carbon isotope fractionation during gas-water exchange and dissolution of CO2, Geochim. Cosmochim. Acta, 59, 107114, 1995.