SEARCH

SEARCH BY CITATION

References

  • Aselmann, I., and P. J. Crutzen, Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions, J. Atmos. Chem., 8(4), 307358, 1989.
  • Bartlett, K. B., and R. C. Harriss, Review and assessment of methane emissions from wetlands, Chemosphere, 26(1–4), 261320, 1993.
  • Brook, E. J., S. Harder, J. Severinghaus, E. J. Steig, and C. M. Sucher, On the origin and timing of rapid changes in atmospheric methane during the last glacial period, Global Biogeochem. Cycles, 14(2), 559572, 2000.
  • Cao, M., S. Marshall, and K. Gregson, Global carbon exchange and methane emission from natural wetlands: Application of a process-based model, J. Geophys. Res., 101(D9), 14,39914,414, 1996.
  • Chappellaz, J., J. M. Barnola, D. Raynaud, Y. S. Korotkevich, and C. Lorius, Ice-core record of atmospheric methane over the past 160,000 years, Nature, 345, 127131, 1990.
  • Chappellaz, J., et al., Synchronous Changes in Atmospheric CH4 and Greenland Climate Between 40-Kyr and 8-Kyr Bp, Nature, 366, 443445, 1993a.
  • Chappellaz, J. A., I. Y. Fung, and A. M. Thompson, The atmospheric CH4 increase since the Last Glacial Maximum (1). Source estimates, Tellus, 45B(3), 228241, 1993b.
  • Christensen, T. R., Potential and actual trace gas fluxes in Arctic terrestrial ecosystems, Polar Res., 18(2), 199206, 1999.
  • Christensen, T. R., I. C. Prentice, J. Kaplan, A. Haxeltine, and S. Sitch, Methane flux from northern wetlands and tundra — An ecosystem source modelling approach, Tellus, 48B(5), 652661, 1996.
  • CLIMAP project members, Seasonal reconstructions of the Earth's surface as the Glacial Maximum, Geological Society of America Map Chart Series 36, Boulder, 1981.
  • Cogley, J. G., GGHYDRO—Global Hydrographic Data, Release 2.1, 23 pp., Trent Climate Note 91-1, Department of Geography, Trent University, Peterborough, 1994.
  • Cowling, S. A., and M. T. Sykes, Physiological significance of low atmospheric CO2 for plant-climate interactions, Quat. Res., 52, 237242, 1999.
  • Crutzen, P. J., and C. Brühl, A model study of atmospheric temperatures and the concentrations of ozone, hydroxyl, and some other photochemically active gases during the glacial, the preindustrial Holocene and the present, Geophys. Res. Lett., 20(11), 10471050, 1993.
  • Dällenbach, A., Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Last Glacial and the transition to the Holocene, Geophys. Res. Lett., 27(7), 10051008, 2000.
  • Darras, S., M. Michou, and C. Sarrat, IGBP-DIS wetland data initiative: A first step towards identifying a global delination of wetlands, IGBP-DIS Working Paper 19, IGBP-DIS, Tolouse, 1999.
  • Edwards, M. E., et al., Pollen-based biomes for Beringia 18,000, 6000 and 0 14C yr B. P. J. Biogeog., 27, 521554, 2000.
  • FAO, Digital Soil Map of the World and Derived Soil Properties, CD-ROM, Food and Agriculture Organization, Rome, 1995.
  • Fung, I., et al., 3-dimensional model synthesis of the global methane cycle, J. Geophys. Res., 96(D7), 13,03313,065, 1991.
  • GETECH, Global DTM5, CD-ROM, Geophysical Exploration Technology, Leeds, 1996.
  • Hagemann, S., and L. Dümenil, Comparison of two global wetlands datasets, in Earth Surface Remote Sensing, edited by G. Cecchi, E. T. Engman, and E. Zilioli, pp. 193201, 1997.
  • Hanebuth, T., K. Stattegger, and P. M. Grootes, Rapid flooding of the Sunda Shelf: A late-glacial sea-level record, Science, 288, 10331035, 2000.
  • Hein, R., P. J. Crutzen, and M. Heimann, An inverse modeling approach to investigate the global atmospheric methane cycle, Global Biogeochem. Cycles, 11(1), 4376, 1997.
  • Houweling, S., Global Modeling of Atmospheric Methane Sources and Sinks, Ph.D. thesis, University of Utrecht, Utrecht, 1999.
  • Kaplan, J. O., Geophysical Applications of Vegetation Modeling, 128 pp., Ph.D. Thesis, Lund University, Lund, 2001.
  • Levis, S., J. A. Foley, and D. Pollard, CO2, climate, and vegetation feedbacks at the Last Glacial Maximum, J. Geophys., 104(D24), 31,19131,198, 1999.
  • Martinerie, P., G. P. Brasseur, and C. Granier, The chemical composition of ancient atmospheres: A model study constrained by ice core data, J. Geophys., Res., 100(D7), 14,29114,304, 1995.
  • Matthews, E., Wetlands, in Atmospheric Methane, edited by M. A. K. Khalil, Springer- Verlag, Berlin, 2000.
  • Matthews, E., and I. Fung, Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources, Global Biogeochem. Cycles, 1(1), 6186, 1987.
  • McElroy, M. B., Studies of Polar Ice: Insights for atmospheric chemistry, in The Environmental Record in Glaciers and Ice Sheets, edited by H. Oeschger, and C. C. Langway, pp. 363377, John Wiley and Sons, New York, 1989.
  • Petit, J. R., et al., Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399, 429436, 1999.
  • Petit-Maire, N., M. Fontugne, and C. Rouland, Atmospheric methane ratio and environmental changes in the Sahara and Sahel during the last 130 kyrs, Palaeogeogr. Palaeoclimatol. Palaeoecol., 86(1–2), 197204, 1991.
  • Pinto, J. P., and M. A. K. Khalil, The stability of tropospheric OH during ice ages, inter-glacial epochs and modern times, Tellus, 43B(5), 347352, 1991.
  • Raynaud, D., J. Chappellaz, J. M. Barnola, Y. S. Korotkevich, and C. Lorius, Climatic and CH4 Cycle Implications of Glacial Interglacial CH4 Change in the Vostok Ice Core, Nature, 333, 655657, 1988.
  • Ridgwell, A. J., S. J. Marshall, and K. Gregson, Consumption of atmospheric methane by soils: A process-based model, Global Biogeochem. Cycles, 13(1), 5970, 1999.
  • Schimel, D., et al., Radiative forcing of climate change, in Climate Change 1995: The Science of Climate Change, edited by J. T. Houghton, et al., pp. 65131, Cambridge University Press, Cambridge, 1996.
  • Shea, D. J., K. E. Trenberth, and R. W. Reynolds, A global monthly sea surface temperature climatology, J. Climate, 5, 9871001, 1992.
  • Thompson, A. M., J. A. Chappellaz, I. Y. Fung, and T. L. Kucsera, The atmospheric CH4 increase since the Last Glacial Maximum (2). Interactions with oxidants, Tellus, 45B(3), 242257, 1993.
  • Valentin, K. M., and P. J. Crutzen, A two-dimensional, global photochemical study on the influences of increasing atmospheric chemistry since the Last Glacial Maximum, Abstracts volume, Sixth CACGP Symposium, Chemistry of the Global Atmosphere, Chamrousse, 1990.
  • Walter, B., Development of a Process-Based Model to Derive Methane Emissions from Natural Wetlands for Climate Studies, 160 pp., Ph.D. thesis, Universität Hamburg, Hamburg, 1998.
  • Webb, T.III, P. J. Bartlein, S. P. Harrison, and K. H. Anderson, Vegetation, lake levels and climate in eastern North America for the past 18,000 years, in Global Changes Since the Last Glacial Maximum, edited by H. E. Wright Jr, et al., pp. 415467, University of Minnesota Press, Minneapolis, 1993.
  • Worthy, D. E. J., I. Levin, F. Hopper, M. K. Ernst, and N. B. A. Trivett, Evidence for a link between climate and northern wetland methane emissions, J. Geophys. Res., 105(D3), 40314038, 2000.