SEARCH

SEARCH BY CITATION

References

  • Abercrombie, R., Earthquake source scaling relationships for -1 to 5 ML using seismograms recorded at 2.5 km depth, J. Geophys. Res., 100, 2401524036, 1995.
  • Abramowitz, M., I. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, Dover, Mineolas, N. Y., 1965.
  • Ben-Zion, Y., D. Andrews, Properties and implications of dynamic rupture along a material interface, Bull. Seismol. Soc. Am., 88, 10851094, 1998.
  • Brown, S. R., C. H. Scholz, Broad bandwidth study of the topographys of natural rock surfaces, J. Geophys. Res., 90, 1257512582, 1985.
  • Brune, J., S. Brown, P. Johnson, Rupture mechanism and interface sparation in foam rubbre models of earthquakes: A possible solution to the heat flow paradox and the paradox of large overthrusts, Tectonophysics, 218, 5967, 1993.
  • Byerlee, J., Friction, overpressure and fault normal compression, Geophys. Res. Lett., 17, 21092112, 1990.
  • Byerlee, J. D., Static and kinetic friction of granite at high normal stress, Inst. J. Rock Mech. Min. Soc., 7, 38213827, 1970.
  • , Handbook of Physical Properties of Rocks, , 2R. S. Carmichael, CRC Press, Boca Raton, Fla., 1982.
  • Davis, S. N., R. J. DeWiest, Hydrogeology, John Wiley, New York, 1966.
  • Dowson, D., G. Higginson, Elasto-Hydrodynamic Lubrication, Pergamon, New York, 1977.
  • Fletcher, J., P. Spudich, Rupture characterisitics of the three M ˜ 4.7 (1992–1994) Parkfield earthquakes, J. Geophys. Res., 103, 835854, 1998.
  • Hamrock, B. J., Fundamentals of Fluid Film Lubrication, McGraw-Hill, New York, 1994.
  • Heaton, T. H., Evidence for and implications of self-healing pulses of slip in earthquake rupture, Phys. Earth Planet. Inter., 64, 120, 1990.
  • Hubbert, M. K., W. W. Rubey, Role of fluid pressure in mechanics of overthrust faulting, Geol. Soc. Amr. Bull., 70, 115166, 1959.
  • Husseini, M. I., Energy balance for motion along a fault, Geophys. J. R. Astron. Soc., 49, 699714, 1977.
  • Jacobson, B., Rheology and Elastohydrodynamics Lubrication, Elsevier Sci., New York, 1991.
  • Jeffreys, H., On the mechanics of faulting, Geol. Mag., 79, 291, 1942.
  • Jiang, X., D. Hua, H. Cheng, X. Ai, S. C. Lee, A mixed elastohydrodynamic lubrication model with asperity contact, J. Tribol., 121, 481491, 1999.
  • Kanamori, H., Mechanics of earthquakes, Annu. Rev. Earth Planet. Sci., 22, 207237, 1994.
  • Kanamori, H., D. L. Anderson, Theoretical basis of some empirical relations in seismology, Bull. Seismol. Soc. Am., 65, 10731095, 1975.
  • Kanamori, H., T. Heaton, Microscopic and macroscopic physics of earthquakes, GeoComplexity and the Physics of Earthquakes, Geophys. Monogr. Ser., 120J. Rundle, D. Turcotte, W. Klein, 147183, AGU, Washington, D. C., 2000.
  • Kaneko, S., H. Takabatake, K. Ito, Numerical analysis of static characteristics at start of operation in porous journal bearings with sealed ends, J. Tribol., 121, 6268, 1999.
  • Kushiro, I., Viscosity, density, and structure of silicate melts at high pressures, and their petrological applications, Physics of Magmatic Processes, 93117, Princeton Univ. Press, Princeton, N. J., 1980.
  • Lachenbruch, A. H., Frictional heating, fluid pressure and the resistance to fault motion, J. Geophys. Res., 85, 60976112, 1980.
  • Lachenbruch, A. H., J. H. Sass, Heat flow and energetics of the San Andreas fault zone, J. Geophys. Res., 85, 61856222, 1980.
  • Lay, T., T. Wallace, Modern Global Seismology, Academic, San Diego, Calif., 1995.
  • Leal, L., Laminar Flow and Convective Transport Processes, Butterworth-Heinemann, Woburn, Mass., 1992.
  • Ma, K.-F., C.-T. Lee, Y.-B. Tsai, The Chi-Chi, Taiwan earthquake: Large surface displacements on an inland thrust fault, Eos Trans. AGU, 80, 605611, 1999.
  • Major, J. J., T. C. Pierson, Debris flow rheology: Experimental analysis of fine-grained slurries, Water Resour. Res., 28, 841857, 1992.
  • Mase, C. W., L. Smith, Effects of frictional heating on the thermal, hydrologic, and mechanical response of a fault, J. Geophys. Res., 92, 62496272, 1987.
  • Melosh, J., Acoustic fluidization: a new geologic process?, J. Geophys. Res., 84, 75127520, 1979.
  • Mott, N. F., Fracture of metals: Some theoretical considerations, Engineering, 165, 1618, 1948.
  • Okamura, H., A contribution to the numerial analysis of isothermal elastohydrodynamic lubrication, Tribology of Reciprocating Engines: Proceedings of the 9th Leeds-Lyon Symposium on Tribology held in Bodington Hall, the University of Leeds, England, 7–10 September 1982D. Dowson, 313320, Butterworths, London, 1983.
  • Otsuki, K., Thermal pressurization, fluidization and melting of fault gouge recorded in the rock from Nojima seismic fault, Eos Trans. AGU, 8046, Fall Meet. Suppl, F727, 1999.
  • Persson, B. N. J., Sliding Friction: Physical Principles and Applications, Springer-Verlag, New York, 1998.
  • Power, W. L., T. E. Tullis, Euclidean and fractal models for the description of rock surface roughness, J. Geophys. Res., 93, 415424, 1991.
  • Prejean, S. G., W. L. Ellsworth, Observations of earthquake source parameters and attenuation at 2 km depth in the Long Valley Caldera, Eastern California, Bull. Seismol. Soc. Am., 91, 165177, 2001.
  • Reynolds, O., On the theory of lubrication and its application to Mr. Beauchamp Tower's experiments, including an experimental determination of the viscosity of olive oil, Philos. Trans. R. Soc. London, 177, 157234, 1886.
  • Rumble, D., Water circulation in metamorphism, J. Geophys. Res., 99, 1549915502, 1994.
  • Sato, T., T. Hirasawa, Body wave spectra from propagating shear cracks, J. Phys. Earth, 21, 415431, 1973.
  • Scholz, C. H., The Mechanics of Earthquakes and Faulting, Cambridge Univ. Press, New York, 1990.
  • Sengers, J., J. Watson, Improved international formulations for the viscosity and thermal-conductivity of water substance, J. Phys. Chem. Ref. Data, 15, 12911314, 1986.
  • Sibson, R., Interactions between temperature and pore-fluid pressure during earthquake faulting and a mechanism for partial or total stress relief, Nature Phys. Sci., 243, 6668, 1973.
  • Sibson, R., Thickness of the seismogenic slip zone: Constraints from field geology, Eos Trans. AGU, 8046, Fall Meet. Suppl, F727, 1999.
  • Singh, S., M. Ordaz, Seismic energy release in mexican subduction zone earthquakes, Bull. Seismol. Soc. Am., 84, 15331550, 1994.
  • Sommerfeld, A., Mechanics of Deformable Bodies, Academic, San Diego, Calif., 1950.
  • Spikes, H., Mixed lubrication-an overview, Lubric. Sci., 9, 221253, 1997.
  • Spray, J. G., Viscosity determinations of some frictionally generated silicate melts: Implications for fault zone rheology at high strain rates, J. Geophys. Res., 98, 80538068, 1993.
  • Szeri, A. Z., Fluid Film Lubrication: Theory & Design, Cambridge Univ. Press, New York, 1998.
  • Timoshenko, S., J. Goodier, Theory of Elasticity, McGraw-Hill, NewYork, 1970.
  • Venkataraman, A., L. Rivera, H. Kanamori, Radiated energy from the october 16, 1999 hector mine earthquake: regional and teleseismic estimates, Eos Trans. AGU, 8148, Fall Meet. Suppl, F843, 2000.
  • Wald, D. J., T. H. Heaton, Spatial and temporal distribution of slip for the 1992 Landers, California, earthquake, Bull. Seismol. Soc. Am., 84, 668691, 1994.
  • Wald, D. J., H. Heaton, Thomas, K. Hudnut, The slip history of the 1994 Northridge, California, earthquake determined from strong-motion, teleseismic, GPS, and leveling data, Bull. Seismol. Soc. Am., 86, S49S70, 1996.