SEARCH

SEARCH BY CITATION

References

  • Anderson, O. L., and D. G. Isaak, Elastic constants of mantle minerals at high temperature, in Mineral Physics and Crystallography: A Handbook of Physical Constants, AGU Ref. Shelf, vol. 2, edited by T. J. Ahrens, pp. 6497, AGU, Washington, D.C., 1995.
  • Ashby, M. F., Boundary defects and atomistic aspects of boundary sliding and diffusional creep, Surf. Sci., 31, 498542, 1972.
  • Béjina, F., O. Jaoul, and R. C. Liebermann, Activation volume of Si diffusion in San Carlos olivine: Implications for upper mantle rheology, J. Geophys. Res., 104, 25,52925,542, 1999.
  • Berckhemer, H., W. Kampfmann, E. Aulbach, and H. Schmeling, Shear modulus and Q of forsterite and dunite near partial melting from forced-oscillation experiments, Phys. Earth Planet. Inter., 29, 3041, 1982.
  • Bunton, J. H., and R. F. Cooper, The impact of grain size on the shear creep and attenuation behavior of polycrystalline olivine, Eos Trans. AGU, 82(47), Fall Meet. Suppl., Abstract T21C-03, 2001.
  • Crossman, F. W., and M. F. Ashby, The non-uniform flow of polycrystals by grain-boundary sliding accommodated by power-law creep, Acta Metall., 23, 425440, 1975.
  • Drury, M. R., and J. D. Fitz Gerald, Mantle rheology: Insights from laboratory studies of deformation and phase transition, in The Earth's Mantle: Composition, Structure and Evolution, edited by I. Jackson, pp. 503559, Cambridge Univ. Press, New York, 1998.
  • Frost, H. J., and M. F. Ashby, Deformation-mechanism maps. The plasticity and creep of metals and ceramics, 166 pp., Pergamon, New York, 1982.
  • Ghahremani, F., Effect of grain boundary sliding on inelasticity of polycrystals, Int. J. Solids Struct., 16, 825845, 1980.
  • Goetze, C., A brief summary of our present day understanding of the effect of volatiles and partial melt on the mechanical properties of the upper mantle, in High-Pressure Research: Applications in Geophysics, edited by M. H. Manghnani, and S. Akimoto, pp. 323, Academic, San Diego, Calif., 1977.
  • Grand, S. P., and D. V. Helmberger, Upper mantle shear structure beneath the Northwest Atlantic Ocean, J. Geophys. Res., 89, 11,46511,475, 1984.
  • Gribb, T. T., and R. F. Cooper, Low-frequency shear attenuation in polycrystalline olivine: Grain boundary diffusion and the physical significance of the Andrade model for viscoelastic rheology, J. Geophys. Res., 103, 27,26727,279, 1998.
  • Gueguen, Y., M. Darot, P. Mazot, and J. Woirgard, Q-1 of forsterite single crystals, Phys. Earth Planet. Inter., 55, 254258, 1989.
  • Hirth, G., and D. L. Kohlstedt, Experimental constraints on the dynamics of the partially molten upper mantle: Deformation in the diffusion creep regime, J. Geophys. Res., 100, 19812001, 1995.
  • Jackson, I., Laboratory measurement of seismic wave dispersion and attenuation: Recent progress, in Earth's Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale, Geophys. Monogr. Ser., vol. 117, edited by S. Karato et al., pp. 265289, AGU, Washington, D.C., 2000.
  • Jackson, I., and M. S. Paterson, A high-pressure, high-temperature apparatus for studies of seismic wave dispersion and attenuation, Pure Appl. Geophys., 141, 445466, 1993.
  • Jackson, I., M. S. Paterson, and J. D. Fitz Gerald, Seismic wave attenuation in Åheim dunite: An experimental study, Geophys. J. Int., 108, 517534, 1992.
  • Jackson, I., J. D. Fitz Gerald, and H. Kokkonen, High-temperature viscoelastic relaxation in iron and its implications for the shear modulus and attenuation of the Earth's inner core, J. Geophys. Res., 105, 23,60523,634, 2000.
  • Karato, S., Importance of anelasticity in the interpretation of seismic tomography, Geophys. Res. Lett., 20, 16231626, 1993.
  • Karato, S., and B. Karki, Origin of lateral variation of seismic wave velocities and density in the deep mantle, J. Geophys. Res., 106, 21,77121,783, 2001.
  • Kê, T., Experimental evidence of the viscous behaviour of grain boundaries in metals, Phys. Rev., 71, 533546, 1947a.
  • Kê, T., Stress relaxation across grain boundaries in metals, Phys. Rev., 72, 4146, 1947b.
  • Lakki, A., R. Schaller, C. Carry, and W. Benoit, High-temperature anelastic and viscoplastic deformation of fine-grained magnesia- and magnesia/yttria-doped alumina, J. Am. Ceram. Soc., 82, 21812187, 1999.
  • Mosher, D. R., and R. Raj, Use of the internal friction technique to measure rates of grain boundary sliding, Acta Metall., 22, 14691474, 1974.
  • Mosher, D. R., R. Raj, and R. Kossowsky, Measurement of viscosity of the grain-boundary phase in hot-pressed silicon nitride, J. Mater. Sci., 11, 4953, 1976.
  • Nowick, A. S., and B. S. Berry, Anelastic Relaxation in Crystalline Solids, 677 pp., Academic, San Diego, Calif., 1972.
  • O'Connell, R. J., and B. Budiansky, Viscoelastic properties of fluid-saturated cracked solids, J. Geophys. Res., 82, 57195735, 1977.
  • Pezzotti, G., K. Ota, and H.-J. Kleebe, Grain-boundary viscosity of polycrystalline silicon carbides, J. Am. Ceram. Soc., 81, 32933299, 1998.
  • Raj, R., Transient behaviour of diffusion-induced creep and creep rupture, Metall. Trans. A, 6, 14991509, 1975.
  • Raj, R., and M. F. Ashby, On grain boundary sliding and diffusional creep, Metall. Trans., 2, 11131127, 1971.
  • Romanowicz, B., and J. J. Durek, Seismological constraints on attenuation in the Earth: A review, in Earth's Deep Interior. Mineral Physics and Tomography From the Atomic to the Global Scale, Geophys. Monogr. Ser., vol. 117, edited by S. Karato et al., pp. 161180, AGU, Washington, D.C., 2000.
  • Su, W., R. L. Woodward, and A. M. Dziewonski, Degree 12 model of shear velocity heterogeneity in the mantle, J. Geophys. Res., 99, 69456980, 1994.
  • Tan, B. H., I. Jackson, and J. D. Fitz Gerald, Shear wave dispersion and attenuation in fine-grained synthetic olivine aggregates: Preliminary results, Geophys. Res. Lett., 24, 10551058, 1997.
  • Tan, B. H., I. Jackson, and J. D. Fitz Gerald, High-temperature viscoelasticity of fine-grained polycrystalline olivine, Phys. Chem. Miner., 28, 641664, 2001.
  • ter Heege, J., H. de Bresser, and C. Spiers, Incorporating grain size distributions in flow laws: Implications for rheology, paper presented at Conference on Deformation Mechanisms, Rheology and Tectonics, Noorwijkerhout, Netherlands, 2001.
  • Toomey, D. R., W. S. D. Wilcock, S. C. Solomon, W. C. Hammond, and J. A. Orcutt, Mantle seismic structure beneath the MELT region of the East Pacific Rise and P and S wave tomography, Science, 280, 12241227, 1998.
  • van der Hilst, R. D., B. L. N. Kennett, and T. Shibutani, Upper mantle structure beneath Australia from portable array deployments, in Structure and Evolution of the Australian Continent, Geodyn. Ser., vol. 26, edited by J. Braun et al., pp. 3957, AGU, Washington, D.C., 1998.
  • Webb, S., I. Jackson, and J. Fitz Gerald, Viscoelasticity of the titanate perovskites CaTiO3 and SrTiO3 at high temperature, Phys. Earth Planet. Inter., 115, 259291, 1999.