SEARCH

SEARCH BY CITATION

References

  • Bliss, C., Assessment of the coal resources of the Kyrgyz republic, Open File Rep. 97-137A, U.S. Geol. Surv., Reston, Va., 1997. (Available at http://energy.er.usgs.gov/products/openfile/OFR97-137A/.).
  • Bond, T. C., Light absorption by primary particles from fossil-fuel combustion: Implications for radiative forcing, Ph.D. dissertation, Univ. of Wash., Seattle, 2000.
  • Bond, T. C., Spectral dependence of visible light absorption by carbonaceous particles emitted from coal combustion, Geophys. Res. Lett., 28(21), 40754078, 2001.
  • Bond, T. C., R. J. Charlson, and J. Heintzenberg, Quantifying the emission of light-absorbing particles: Measurements tailored to climate studies, Geophys. Res. Lett., 23(3), 337340, 1998.
  • Bond, T. C., T. L. Anderson, and D. Campbell, Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols, Aerosol Sci. Technol., 30, 582600, 1999a.
  • Bond, T. C., M. Bussemer, B. Wehner, S. Keller, R. J. Charlson, and J. Heintzenberg, Light absorption by primary particle emissions from a lignite burning plant, Environ. Sci. Technol., 33, 38873891, 1999b.
  • Butcher, S. S., and M. J. Ellenbecker, Particulate emission factors for small wood and coal stoves, J. Air Pollut. Control Assoc., 32(4), 380384, 1982.
  • Charlson, R. J., and M. J. Pilat, Climate: The influence of aerosols, J. Appl. Meteorol., 8(6), 10011002, 1969.
  • Charlson, R. J., J. Langner, H. Rodhe, C. B. Leovy, and S. G. Warren, Perturbation of the Northern Hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols, Tellus, Ser. AB, 43, 152163, 1991.
  • Chylek, P., and J. Wong, Effect of absorbing aerosols on global radiation budget, Geophys. Res. Lett., 22(8), 929931, 1995.
  • Clar, E., Polyaromatic Hydrocarbons, Academic, San Diego, Calif., 1964.
  • Cooke, W. F., and J. J. N. Wilson, A global black carbon aerosol model, J. Geophys. Res., 101(14), 19,39519,409, 1996.
  • Cooke, W. F., C. Liousse, H. Cachier, and J. Feichter, Construction of a 1° × 1° fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model, J. Geophys. Res., 104(18), 22,13722,162, 1999.
  • Currie, L. A., G. A. Klouda, B. A. B. Benner Jr., K. Garrity, and T. I. Eglinton, Isotopic and molecular fractionation in combustion: Three routes to molecular marker validation, including direct molecular “dating” (GC/AMS), Atmos. Environ., 33, 27892806, 1999.
  • d'Almeida, G. A., P. Koepke, and E. P. Shettle, Atmospheric Aerosols: Global Climatology and Radiative Characteristics, chap. 4, pp. 4597, A. Deepak, Hampton, Va., 1991.
  • Dobbins, R. A., and C. M. Megaridis, Absorption and scattering of light by polydisperse aggregates, Appl. Opt., 30, 47474754, 1991.
  • Doyle, G., China's potential in international coal trade, Lexington, Kentucky, Rep. IEACR/02, Int. Energy Agency, Paris, 1987.
  • Flagan, R. C., and D. D. Taylor, Laboratory studies of submicron particles from coal combustion, in Eighteenth Symposium (International) on Combustion, pp. 12271248, Combust. Inst., Pittsburgh, Pa., 1982.
  • Freihaut, J. D., A parametric investigation of tar release in coal devolatilization, in Nineteenth Symposium (International) on Combustion, pp. 11591167, Combust. Inst., Pittsburgh, Pa., 1982.
  • Frenklach, M., D. W. Clary, W. C. Gardiner, and S. E. Stein, Effect of fuel structure on pathways to soot, in Twenty-First Symposium (International) on Combustion, pp. 10671076, Combust. Inst., Pittsburgh, Pa., 1986.
  • Friedlander, S. K., Smoke, Dust and Haze, Oxford Univ. Press, New York, 2000.
  • Graham, S. C., The collisional growth of soot particles at high temperatures, in Sixteenth Symposium (International) on Combustion, pp. 663669, Combust. Inst., Pittsburgh, Pa., 1976.
  • Hansen, J., M. Sato, and R. Ruedy, Radiative forcing and climate response, J. Geophys. Res., 102(6), 68316864, 1997.
  • Haywood, J. M., and V. Ramaswamy, Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols, J. Geophys. Res., 103(6), 60436058, 1998.
  • Haywood, J. M., and K. P. Shine, The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget, Geophys. Res. Lett., 22(5), 603606, 1995.
  • Husar, R. B., J. M. Prospero, and L. L. Stowe, Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product, J. Geophys. Res., 102(14), 16,88916,909, 1997.
  • Jacobson, M. Z., A physically-based treatment of elemental carbon optics: Implications for global direct forcing of aerosols, Geophys. Res. Lett., 27(2), 217220, 2000.
  • Kiehl, J. T., T. L. Schneider, P. J. Rasch, M. C. Barth, and J. Wong, Radiative forcing due to sulfate aerosols from simulations with the National Center for Atmospheric Research Community Climate Model, version 3, J. Geophys. Res., 105(1), 14411457, 2000.
  • Liousse, C., J. E. Penner, C. Chuang, J. J. Walton, and H. Eddleman, A global three-dimensional study of carbonaceous aerosols, J. Geophys. Res., 101(14), 19,41119,432, 1996.
  • Lucas, J. A., and T. F. Wall, Volatile matter release, particle/cloud ignition, and combustion of near-stoichiometric suspensions of pulverized coal, in Twenty-Fifth Symposium (International) on Combustion, pp. 485491, Combust. Inst., Pittsburgh, Pa., 1994.
  • Ma, J., T. H. Fletcher, and B. W. Webb, Conversion of coal tar to soot during coal pyrolysis in a post-flame environment, in Twenty-Sixth Symposium (International) on Combustion, pp. 31613167, Combust. Inst., Pittsburgh, Pa., 1996.
  • Macumber, D. W., and D. R. Jaasma, Efficiency and emissions of a hand-fired residential coal stove, in Residential Solid Fuels, edited by J. A. Cooper, and D. Malek, pp. 313332, Ore. Grad. Center, Portland, Ore, 1982.
  • Marchand, A., Various kinds of solid carbon: Structure and optical properties, in Polycyclic Aromatic Hydrocarbons and Astrophysics, edited by A. Léger, pp. 3154, D. Reidel, Norwell, Mass., 1987.
  • Martins, J. V., P. Artaxo, C. Liousse, J. S. Reid, P. V. Hobbs, and Y. Kaufman, Effects of black carbon content, particle size, and mixing on light absorption by aerosol from biomass burning in Brazil, J. Geophys. Res., 103(24), 32,04132,050, 1998.
  • Mitra, A., A. F. Sarofim, and E. Bar-Ziv, The influence of coal type on the evolution of polycyclic aromatic hydrocarbons during coal devolatilization, Aerosol Sci. Technol., 6, 261271, 1987.
  • Mulholland, G. W., and M. Y. Choi, Measurement of the mass-specific extinction coefficient for acetylene and ethene smoke using the Large Agglomerate Optics Facility, in Twenty-Seventh Symposium (International) on Combustion, pp. 15151522, Combust. Inst., Pittsburgh, Pa., 1998.
  • Novakov, T., S. G. Chang, and A. B. Harker, Sulfates as pollution particulates: Catalytic formation on carbon (soot) particles, Science, 186, 259261, 1974.
  • Ogren, J. A., P. J. Groblicki, and R. J. Charlson, Measurement of the removal rate of elemental carbon from the atmosphere, Sci. Total Environ., 36, 329338, 1984.
  • Penner, J. E., R. E. Dickinson, and C. A. O'Neill, Effects of aerosol from biomass burning on the global radiation budget, Science, 256, 14321434, 1992.
  • Penner, J. E., C. C. Chuang, and K. Grant, Climate forcing by carbonaceous and sulfate aerosols, Clim. Dyn., 14(12), 839851, 1998.
  • Pinto, J. P., R. K. Stevens, R. D. Willis, R. Kellogg, Y. Mamane, J. Novak, J. Santroch, I. Benes, J. Lenicek, and V. Bures, Czech air quality monitoring and receptor modeling study, Environ. Sci. Technol., 32, 843854, 1998.
  • Platt, J. R., Classification of spectra of cata-condensed hydrocarbons, J. Chem. Phys., 17(5), 484495, 1949.
  • Rosen, H., A. D. A. Hansen, L. Gundel, and T. Novakov, Identification of the optically absorbing component in urban aerosols, Appl. Opt., 17, 38593861, 1981.
  • Seeker, W. R., G. S. Samuelsen, M. P. Heap, and J. D. Trolinger, The thermal decomposition of pulverized coal particles, in Eighteenth Symposium (International) on Combustion, pp. 12131226, Combust. Inst., Pittsburgh, Pa., 1981.
  • Smith, D. M., and A. R. Chughtai, The surface structure and reactivity of black carbon, Colloids Surf. A, 105, 4777, 1995.
  • Solomon, P. R., P. I. Chien, R. M. Carangelo, P. E. Best, and J. R. Markham, Application of FT-IR emission/transmission (E/T) spectroscopy to study coal combustion phenomena, in Twenty-Second Symposium (International) on Combustion, pp. 211221, Combust. Inst., Pittsburgh, Pa., 1988.
  • Streets, D. G., S. Gupta, S. T. Waldhoff, M. Q. Wang, T. C. Bond, and Y. Bo, Black carbon emissions in China, Atmos. Environ., 35, 42814296, 2001.
  • Suuberg, E. M., W. A. Peters, and J. B. Howard, Product compositions and formation kinetics in rapid pyrolysis of pulverized coal—Implications for combustion, in Seventeenth Symposium (International) on Combustion, pp. 117130, Combust. Inst., Pittsburgh, Pa., 1978.
  • Twomey, S. A., M. Piepgrass, and T. L. Wolfe, An assessment of the impact of pollution on global cloud albedo, Tellus, Ser. B, 36, 356366, 1984.
  • van de Hulst, H. C., Light Scattering by Small Particles, chap. 6, pp. 6384, Dover, Mineola, N.Y., 1957.
  • Wehner, B., T. C. Bond, W. Birmili, J. Heintzenberg, A. Wiedensohler, and R. J. Charlson, Climate-relevant particulate emission characteristics of a coal-fired heating plant, Environ. Sci. Technol., 33, 38813886, 1999.
  • Wornat, M. J., A. F. Sarofim, and J. P. Longwell, Changes in the degree of substitution of polycyclic aromatic compounds from pyrolysis of a high-volatile bituminous coal, Energy Fuels, 1, 431437, 1987.
  • Xu, W.-C., and A. Tomita, Effect of coal type on the flash pyrolysis of various coals, Fuel, 66, 627631, 1987.
  • Zhang, J., K. R. Smith, Y. Ma, S. Ye, F. Jiang, W. Qi, P. Liu, M. A. K. Khalil, R. A. Rasmussen, and S. A. Thorneloe, Greenhouse gases and other airborne pollutants from household stoves in China: A database for emission factors, Atmos. Environ., 34, 45374549, 2000.