SEARCH

SEARCH BY CITATION

References

  • ADB-GEF-UNDP, Asia Least-Cost Greenhouse Gas Abatement Strategy: India National Report, Asian Development Bank, Manila, 1998.
  • Alvarez, R. A., and C. B. Moore, Quantum yield for production of CH3NC in the photolysis of CH3NCS, Science, 263, 205, 1994.
  • Anderson, L. G., et al., Sources and sinks of formaldehyde and acetaldehyde: An analysis of Denver's ambient concentration data, Atmos. Environ., 30, 21132123, 1996.
  • Andreae, M. O., and P. Merlet, Emissions of trace gases and aerosols from biomass burning, Global Biogeochem. Cycles, 15(4), 10.1029/2000GB001382, 2002.
  • Andreae, M. O., et al., Transport of biomass burning smoke to the upper troposphere by deep convection in the equatorial region, Geophys. Res. Lett., 28, 951954, 2001.
  • Arijs, E., and G. Brasseur, Acetonitrile in the stratosphere and implication for positive ion composition, J. Geophys. Res., 91, 40034016, 1986.
  • Arlander, D. W., D. Brüning, U. Schmidt, and D. Ehalt, The distribution of acetaldehyde in the lower troposphere during TROPOZ II, J. Atmos. Chem., 22, 243249, 1995.
  • Atkinson, R., D. L. Baulch, R. A. Cox, R. F. Hapson, J. A. Kerr, M. J. Rossi, and J. Troe, Evaluated kinetic and photochemical data for atmospheric chemistry, J. Phys. Chem. Reg. Data, 28, suppl. Vii, 191193, 1999.
  • Atkinson, R., Atmospheric chemistry of VOCs and NOx, Atmos. Environ., 34, 20632101, 2000.
  • Bange, H. W., and J. Williams, New directions: Acetonitrile in atmospheric and biogeochemical cycles, Atmos. Environ., 34, 49594960, 2000.
  • Chatfield, R. B., E. P. Gardiner, and J. G. Calvert, Sources and sinks of acetone in the troposphere: Behavior of reactive hydrocarbons and a stable product, J. Geophys. Res., 92, 42084216, 1987.
  • Crutzen, P. J., et al., High spatial and temporal resolution measurements of primary organics and their oxidation products over the tropical forest of Surinam, Atmos. Environ., 34, 11611165, 2000.
  • De Latt, A. T. J., J. A. de Guow, J. Lelieveld, and A. Hansel, Model analysis of trace gas meausurements and pollution impact during INDOEX, J. Geophys. Res., 106, 28,46928,480, 2001.
  • Dickerson, R. R., M. O. Andreae, T. Campos, O. L. Mayol-Bracero, C. Neusuess, and D. G. Streets, Analysis of black carbon and carbon monoxide observed over the India Ocean: Implications for emissions and photochemistry, J. Geophys. Res., 107, in press, 10.1029/2001JD000501, 2002.
  • Draxler, R. R., and G. D. Hess, An overview of the Hysplit_4 modeling system for trajectories, dispersion, and deposition, Aust. Meteorol. Mag., 47, 295308, 1998.
  • Elliot, S., and F. S. Rowland, Methyl halide hydrolysis rates in natural waters, J. Atmos. Chem., 20, 229236, 1995.
  • Forest Survey of India (FSI), State of Forest Report — 1999, Ministry of Environ. And Forest, Dehradun, 1999.
  • Hamm, S., and P. Warneck, The interhemispheric distribution and the budget of acetonitrile in the troposphere, J. Geophys. Res., 95, 20,59320,606, 1990.
  • Hamm, S., J. Hahn, G. Helas, and P. Warneck, Acetonitrile in the troposphere: Residence time due to rainout and uptake by the ocean, Geophys. Res. Lett., 11, 12071210, 1984.
  • Hansel, A., and A. Wisthaler, Fast response VOC measurements at Cornelia Fort Airport, Eos Trans. AGU, 81(48), Fall Meet. Suppl., Abstract, 2000.
  • Hansel, A., A. Jordan, R. Holzinger, P. Prazeller, W. Vogel, and W. Lindinger, Proton transfer reaction mass spectrometry: On-line trace gas analysis at the ppbv level, Int. J. Mass Spectrom. Ion Processes, 149/150, 609619, 1995.
  • Holzinger, R., C. Warneke, A. Hansel, A. Jordan, W. Lindinger, D. H. Scharffe, G. Schade, and P. J. Crutzen, Biomass burning as a source of formaldehyde, acetaldehyde, methanol, acetone, acetonitrile, and hydrogen cyanide, Geophys. Res. Lett., 26, 11611164, 1999.
  • Holzinger, R., A. Jordan, A. Hansel, and W. Lindinger, Automobile emissions of acetonitrile: Assessment of its contribution to the global source, J. Atmos. Chem., 38, 187193, 2001.
  • Hunter, E. P., and S. G. Lias, Evaluated gas phase basicities and proton affinities of Molecules: An update, J. Phys. Chem. Ref. Data, 27, 413656, 1998.
  • Hurst, D. F., D. W. T. Griffith, and G. D. Cook, Trace gas emissions from biomass burning in tropical Australian savannas, J. Geophys. Res., 99, 16,44116,456, 1994.
  • India Meteorological Department (IMD), Climate of India in 1999, New Delhi, India, 2000.
  • Junge, C. E., Residence time and variability of tropospheric trace gases, Tellus, 26, 477488, 1974.
  • Kesselmeier, J., and M. Staudt, Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology, J. Atmos. Chem., 33, 2388, 1999.
  • Kieber, D. J., J. McDaniel, and K. Mopper, Photochemical source of biological substrates in sea water: Implications for carbon cycling, Nature, 341, 637639, 1989.
  • Kirstine, W., I. Galbally, Y. Ye, and M. Hopper, Emissions of volatile organic compounds (primarily oxygenated species) from pasture, J. Geophys. Res., 103, 10,60510,619, 1998.
  • König, G., et al., Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emissions of selected mid-European agricultural and natural plant species, Atmos. Environ., 29, 861874, 1995.
  • Krishnamurti, T. N., B. Jha, P. J. Rasch, and V. Ramanathan, Meteorol. Atmos. Phys., 64, 123, 1997.
  • Lary, D. J., and D. E. Shallcross, Central role of carbonyl compounds in atmospheric chemistry, J. Geophys. Res., 105, 19,77119,778, 2000.
  • Li, Q., D. J. Jacob, I. Bey, R. M. Yantosca, Y. Zhao, Y. Kondo, and J. Notholt, Atmospheric hydrogen cyanide (HCN): Biomass burning source, ocean sink? Geophys. Res. Lett., 27, 357360, 2000.
  • Lindinger, W., A. Hansel, and A. Jordan, Proton-transfer-reaction mass spectrometry (PTR-MS): On-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev., 27, 347354, 1998.
  • Lobert, J. M., and J. M. Harris, Trace gases and air mass origin over Kaashidoo, Indian Ocean, J. Geophys. Res., 107, 10.1029/2001JD000231, in press, 2002.
  • Lobert, J. M., D. H. Scharffe, W. M. Hao, and P. J. Crutzen, Importance of biomass burning in the atmospheric budgets of nitrogen containing gases, Nature, 346, 552554, 1990.
  • Lobert, J. M., et al., Experimental evaluation of biomass burning emissions: Nitrogen and carbon containing compounds, in Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications, edited by J. S. Levine, pp. 289303, MIT Press, Cambridge, Mass., 1991.
  • MacDonald, R. C., and R. Fall, Detection of substantial emissions of methanol from plants to the atmosphere, Atmos. Environ., 27, 17091713, 1993.
  • Mauzerall, D. L., et al., Photochemistry in biomass burning plumes and implications for tropospheric ozone over the tropical South Atlantic, J. Geophys. Res., 103, 84018423, 1998.
  • Mühle, J., A. Zahn, C. A. M. Brenninkmeyer, V. Gros, and P. J. Crutzen, Air mass classification during the INDOEX R/V Ron Brown cruise using measurements of nonmethane hydrocarbons, CH4, CO2, CO, 14CO, and δ18O(CO), J. Geophys. Res., 10.1029/2001JD000730, in press, 2002.
  • Müller, J.-F., and G. Brasseur, Sources of upper tropospheric HOx: A three-dimensional study, J. Geophys. Res., 104, 17051715, 1999.
  • Nemecek-Marshall, M., Ch. Wojciechowski, J. Kuzma, G. M. Silver, and R. Fall, Marine vibrio species produce the volatile organic compound acetone, Appl. Environ. Microbiol., 61, 4447, 1995.
  • Olivier, J. G. J., et al., Description of EDGAR Version 2.0: A set of global emission inventories of greenhouse gases and ozone-depleting substances for all anthropogenic and most natural sources on a per country basis and on 1° × 1° grid, RIVM Rep. No. 77, 1060 002/TNO-MEP Rep. No. R96/119, 1996.
  • Penkett, S., Non-methane organics in the remote atmosphere, in Atmospheric Chemistry, edited by E. D. Goldberg, pp. 329355, Springer-Verlag, New York, 1982.
  • Poisson, N., M. Kanakidou, and P. J. Crutzen, Impact of non-methane hydrocarbons on tropospheric chemistry and the oxidizing power of the global troposphere: 3-Dimensional modeling results, J. Atmos. Chem., 36, 157230, 2000.
  • Pöschl, U., et al., High acetone concentrations throughout the 0–12 km altitude range over the tropical rainforest in Surinam, J. Atmos. Chem., 38, 115132, 2001.
  • Ravindranath, N. H., and D. O. Hall, Biomass, Energy and Environment: A Developing Country Perspective from India, Oxford Univ. Press, Oxford, United Kingdom, 1995, p. 376 .
  • Rhoads, K. P., et al., The composition of the troposphere over the Indian Ocean during the Monsoonal transition, J. Geophys. Res., 102, 18,98118,995, 1997.
  • Riggs, D. S., J. A. Guarnieri, and S. Addelman, Fitting straight lines when both variables are subject to errors, Life Sci., 22, 13051360, 1978.
  • Saigal, R., Modern forest fire control: The Indian experience, Unasylva, 162(41), 2127, 1990.
  • Schubert, B., U. Schmidt, and D. H. Ehhalt, Untersuchungen zum Nachweis und zur Chemie von Formaldehyd und Acetaldehyd in der unteren Troposphäre, Berichte der Kernforschungsanlage Jülich GmbH, JÜL-2257, Kernforschunngsanlage Jülich Gmb H, Jülich, West Germany, 1988.
  • Sehgal, B., Summertime, and the living ain't easy, The Times of India, Bennet, Coleman, and Co. Ltd., Mumbai, India, 5 May 1999.
  • Singh, H. B., and P. L. Hanst, Peroxyacetyl nitrate (PAN) in the unpolluted atmosphere: An important reservoir for nitrogen oxides, Geophys. Res. Lett., 8, 941944, 1981.
  • Singh, H. B., et al., Acetone in the troposphere: Distribution, sources, and sinks, J. Geophys. Res., 99, 18051819, 1994.
  • Singh, H. B., M. Kanakidou, P. J. Crutzen, and D. J. Jacob, High concentrations and photochemical fate of oxygenated hydrocarbons in the global troposphere, Nature, 378, 5054, 1995.
  • Singh, H. B., A. N. Thakur, Y. E. Chen, and M. Kanakidou, Tetrachloroethylene as an indicator of low Cl atom concentrations in the troposphere, Geophys. Res. Lett., 23, 15291532, 1996.
  • Singh, H. B., et al., Distribution and fate of selected oxygenated organic species in the troposphere and lower stratosphere over the Atlantic, J. Geophys. Res., 105, 37953805, 2000.
  • Singh, H. B., et al., Evidence from the South Pacific troposphere for large global abundances and sources of oxygenated organic compounds, Nature, 410, 10781081, 2001.
  • Sprung, D., C. Jost, T. Reiner, A. Hansel, and A. Wisthaler, Acetone and acetonitrile in the tropical Indian Ocean boundary layer and free troposphere: Aircraft-based intercomparison of AP-CIMS and PTR-MS measurements, J. Geophys. Res., 106, 28,51128,527, 2001.
  • Stehr, J. W., W. P. Ball, R. R. Dickerson, B. G. Doddridge, C. Piety, and J. Johnson, Latitudinal gradients in O3 and CO during INDOEX 1999, J. Geophys. Res., 10.1029/2001JD000446, in press, 2002.
  • Streets, D. G., and N. Y. Tsai, CO emissions in Asia 2000, Version 2, ACE-Asia and Trace-P Modeling and Emission Support System, 2001.
  • Tanner, R. L., B. Zielinska, E. Uwerna, G. Harshfield, and A. P. McNichol, Concentrations of carbonyl compounds and the carbon isotopy of formaldehyde at a coastal site in Nova Scotia during the NARE summer intensive, J. Geophys. Res., 101, 28,96128,970, 1996.
  • United Nations Population Division (UNPD), World Population Prospects: The 2000 Revision, United Nations, New York, 2001.
  • United States Environmental Protection Agency (U. S. EPA), Health assessment document for acetaldehyde, EPA/600/8-86-015A, Environmental Criteria and Assessment Office, Office of Health and Environmental Assessment, Office of Research and Development, Research Triangle Park, N.C., 1987.
  • United States Environmental Protection Agency (U. S. EPA), Chemical summary for acetonitrile (CAS NO. 75-05-8), EPA Rep. 749-F-94-004a, Office of Pollution Prevention and Toxics, Washington, D.C., 1994.
  • Warneke, C., Volatile organische Spurenkomponenten in der Atmosphäre über dem tropischen Regenwald in Surinam während LBA-CLAIRE und die Emissionen aus abgestorbener Biomaterie durch abiologische Prozesse, Ph.D. thesis, Universität Innsbruck, Innsbruck, Austria, 1998.
  • Warneke, C., T. Karl, H. Judmaier, A. Hansel, A. Jordan, W. Lindinger, and P. J. Crutzen, Acetone, methanol, and other partially oxidized volatile organic emissions from dead plant matter by abiological processes: Significance for atmospheric HOx chemistry, Global Biogeochem. Cycles, 13, 917, 1999.
  • Warneke, C., et al., Isoprene and its oxidation products methyl vinyl ketone, methacrolein, and isoprene related peroxides measured online over the tropical rain forest of Surinam in March 1998, J. Atmos. Chem., 38, 167185, 2001.
  • Williams, J., et al., An atmospheric chemistry interpretation of mass scans obtained from a proton transfer mass spectrometer flown over the tropical rainforest of Surinam, J. Atmos. Chem., 38, 133166, 2001.
  • Wisthaler, A., and A. Hansel, Comparison of oxy-VOC and PAN measurements at Cornelia Fort Airport, Eos Trans. AGU, 81(48), Fall Meet. Suppl., Abstract A11B-27, 2000.
  • World Meteorological Organization (WMO), The sea-surface microlayer and its role in global change, GESAMP Rep. and Stud. No. 59, WMO, Geneva, 1995.
  • Yokelson, R. J., et al., Emissions of formaldehyde, acetic acid, methanol, and other trace gases from biomass fires in North Carolina measured by airborne Fourier transform infrared spectroscopy, J. Geophys. Res., 104, 30,10930,125, 1999.
  • Zhou, X., and K. Mopper, Carbonyl compounds in the lower marine troposphere over the Caribbean Sea and Bahamas, J. Geophys. Res., 98C, 23852392, 1993.
  • Zhou, X., and K. Mopper, Photochemical production of low-molecular weight carbonyl compounds in seawater and surface microlayer and their air–sea exchange, Mar. Chem., 56, 201213, 1997.