Speciation of volatile organic compound emissions for regional air quality modeling of particulate matter and ozone

Authors


Abstract

[1] A new classification scheme for the speciation of organic compound emissions for use in air quality models is described. The scheme uses 81 organic compound classes to preserve both net gas-phase reactivity and particulate matter (PM) formation potential. Chemical structure, vapor pressure, hydroxyl radical (OH) reactivity, freezing point/boiling point, and solubility data were used to create the 81 compound classes. Volatile, semivolatile, and nonvolatile organic compounds are included. The new classification scheme has been used in conjunction with the Canadian Emissions Processing System (CEPS) to process 1990 gas-phase and particle-phase organic compound emissions data for summer and winter conditions for a domain covering much of eastern North America. A simple postprocessing model was used to analyze the speciated organic emissions in terms of both gas-phase reactivity and potential to form organic PM. Previously unresolved compound classes that may have a significant impact on ozone formation include biogenic high-reactivity esters and internal C6–8 alkene-alcohols and anthropogenic ethanol and propanol. Organic radical production associated with anthropogenic organic compound emissions may be 1 or more orders of magnitude more important than biogenic-associated production in northern United States and Canadian cities, and a factor of 3 more important in southern U.S. cities. Previously unresolved organic compound classes such as low vapour pressure PAHs, anthropogenic diacids, dialkyl phthalates, and high carbon number alkanes may have a significant impact on organic particle formation. Primary organic particles (poorly characterized in national emissions databases) dominate total organic particle concentrations, followed by secondary formation and primary gas-particle partitioning. The influence of the assumed initial aerosol water concentration on subsequent thermodynamic calculations suggests that hydrophobic and hydrophilic compounds may form external mixtures, and that separate treatment for these groups may be required in future air quality model simulations. The post-processing model used here overestimates the organic particle formation relative to measurements, lacks the complexity of a regional air quality model, and is not intended as an alternative to the latter. Results from the post-processing model do, however, provide guidance for the treatment of organic gases and particles in future air quality modeling work. Future air quality model simulations should attempt to speciate primary particulate organic compounds and include more detailed organic compound classes. Future emissions profile measurements should speciate gaseous high-molecular-mass organic compounds and primary organics emitted in particulate form (primary particle emissions are only available as a total particulate mass in currently available emissions data).

1. Introduction

[2] Emissions of organic compounds play a key role in determining the chemical state of the atmosphere. Organic compounds may react with the hydroxyl radical (OH), ozone (O3), or the nitrate radical (NO3), influencing the atmosphere's chemical state [e.g., Seinfeld and Pandis, 1998]. Organic compounds may also have an impact on human health, both from the toxicity of some individual organic compounds and from formation of ozone and organic particulate matter (PM) [cf. Ramachandran and Vincent, 1999; Zanobetti et al., 2000; Brauer and Brook, 1997].

[3] Regional models of PM formation are the topic of current research initiatives in many centers [e.g., Ackermann et al., 1995; Binkowski and Shankar, 1995; Meng et al., 1998; Moran et al., 1998; Seigneur et al., 1999]. Such source-oriented air quality models must consider the formation of organic aerosol mass, an important component of tropospheric PM. This quantification of the sources of organic PM requires the use of gridded emissions data produced by emissions processing systems [e.g., Dickson and Oliver, 1991; Houyoux et al., 2000], including both primary PM emissions and gaseous organic compound emissions.

[4] Previous speciations of organic compounds in emissions processing systems and in air quality models have been directed toward the accurate representation of hydrocarbon gas-phase reactivity [e.g., Middleton et al., 1990; Stockwell et al., 1997; Carter, 2000]. Speciated organic compounds have thus been lumped into a smaller set of model organic species, in a manner resulting in the same ozone production and loss rates as more detailed mechanisms [e.g., Stockwell et al., 1997; Carter, 2000]. These lumping schemes do not, however, resolve some of the subsets of organic species that partition significantly to the particle phase, or preserve compound properties relevant to aerosol formation. These properties may be lost in emissions processing as the hundreds of organic compounds available from source-type-specific organic compound speciation profiles are grouped into a smaller number of organic compound classes more amenable to regional air quality modeling.

[5] In order to represent the contribution of organic compound emissions to organic aerosol formation, the speciated organic compound emissions used for PM air quality modeling should be based on a set of organic compound classes designed to resolve volatile, semivolatile, and nonvolatile organic compounds. As depicted schematically in Figure 1, emitted organic compounds may contribute to the ambient organic aerosol mass via two different pathways. Organic compounds that are volatile (here taken to mean that they remain in the gas phase throughout the range of conditions present in the ambient atmosphere) may oxidize following reactions with OH, O3, and/or NO3, creating semivolatile and nonvolatile product compounds. Nonvolatile organic compounds remain in the condensed phase under atmospheric conditions, while semivolatile compounds may partition between condensed and gas phases. The extent of partitioning is a function of the temperature and the mixture of gases and condensed phases present at any given place and time [Pankow, 1994a, 1994b]. Semivolatile and nonvolatile organic compounds may also be emitted directly (right-hand emissions source in Figure 1).

Figure 1.

Schematic of organic compound contributions to atmospheric organic aerosol.

[6] The source of origin may also be used to categorize organic compounds in the atmosphere. Compounds that result from atmospheric oxidation are usually referred to as “Secondary,” while emitted compounds are referred to as “Primary.” A primary semivolatile organic compound, once emitted, may partition to aerosols in the absence of precursor gas oxidation. Primary nonvolatile organic compounds remain entirely in the particle phase subsequent to emission. Secondary semivolatile compounds are the aerosol partitioning products of the gas-phase oxidation of primary volatile organic compounds (VOC). Secondary nonvolatile organic compounds also result from oxidation, but remain entirely in the aerosol phase once formed. This combined source (primary and secondary) and volatility (volatile, semivolatile, and nonvolatile) nomenclature has been adopted here to avoid some of the ambiguities present in the terms “Secondary Organic Aerosol” and “Primary Organic Aerosol” often used in the literature. “Secondary Organic Aerosol” sometimes refers to oxidation products alone, and sometimes refers to any organic compound that forms aerosols in situ in the atmosphere. “Primary Organic Aerosol” is sometimes taken to refer to organic compounds that are in the condensed phase during emission, and sometimes is used to refer to condensed semivolatile and nonvolatile organic compounds that may also originate in secondary oxidation. The terminology adopted here avoids these difficulties while building on the terminology used in the past.

[7] Figure 1 also notes that primary nonvolatile and semivolatile organic compounds may be emitted in either gas or particle form. The level of information available for these two different forms of emission differs dramatically. Gas-phase emissions are available as individual organic species, through a process described in detail below. Particle emissions, on the other hand, are currently available only as a total “PM < 2.5 μm diameter” (PM2.5) mass. Relatively few speciation profiles that resolve the organic compounds present in primary particle emissions have been created [Schauer et al., 1996], and relatively crude splitting factors must be employed to determine the organic fraction, the composition of which is unknown. As will be shown below, the poorly characterized primary organic particle emissions may have a critical impact on organic particle concentrations.

[8] Air quality models and the emissions input they use may play a key role in determining the relative importance of primary versus secondary sources of organic aerosol. These relative roles may be difficult to determine from ambient measurements alone, due to ambiguities in determining source by organic composition and to repartitioning of semivolatile compounds with changing atmospheric conditions. Aromatic aldehydes, phenols, alkanals, alkenals, alkanones, alkanols, and dicarboxylic acids were all listed as “primary” components of PM in measurements performed in the Los Angeles basin in the 1990s [Seinfeld and Pandis, 1998; Rogge et al., 1991, 1993a, 1993b, 1993c, 1993d, 1993e]. All of these groups have also been identified as gas-phase products of reactions of VOC aerosol precursors (cf. reviews by Atkinson et al. [1999] and long-range transport study of Satsumabayashi and Kurita [1990]). Carboxylic acids in forest-fire plumes result from both primary emissions and secondary oxidation [Dibb et al., 1996]. Dicarboxylic acid aerosols observed in northern Finland also originate from both primary (combustion) and secondary (photochemical oxidation) sources [Kerminen et al., 1999]. Composition alone may therefore be an inadequate gauge of origin. In addition, temperature and composition changes subsequent to the initial emission may result in a repartitioning of the mass between the particle and gas phases. For example, measurements of PAHs in the Chesapeake Bay region show that the amount of mass in the particle phase versus gas phase has a strong seasonal dependence, likely the result of the effect of ambient temperature on partitioning [Dickhut and Gustafson, 1995]. The effect of interactions between inorganic and organic components may also be substantial, although detailed laboratory studies of these interactions have yet to be performed. Given the difficulties in distinguishing primary versus secondary sources from measurements and the potential for repartitioning with changes in atmospheric conditions, air quality models may thus provide a means for determining the relative importance of the different sources. As will be shown below, the speciation of organic emissions required for this task will be more detailed than the reactivity-based organic speciations employed previously.

[9] The following sections revisit the issue of organic compound emissions speciation and extend previous organic emission classifications in order to consider the volatility of organic compounds as well as their reactivity. We begin with a description of the emissions processing system and the two 1990 national emissions inventories used for this study, and follow with a description of the new set of organic compound classes chosen to represent both gas-phase reactivity and particle-forming aspects of organic emissions. The emissions processing system and the new organic emissions speciation are used to create gridded, speciated organic compound emission fields for a grid covering much of eastern North America, for a summer day and a winter day. These gridded emission fields are then used with a simple postprocessing model to estimate the relative importance of the different organic aerosol formation pathways, and the importance of the different organic compound classes toward both ozone formation and organic particle formation, in different locations. These calculations are intended to provide guidance for future air quality modeling work. A methodology for partitioning calculations based on that employed here could be used within air quality models in order to simulate organic PM. However, our postprocessing analysis is not intended as a substitute for the latter.

2. Emissions Processing System and Emissions Inventories

[10] The air quality models frequently used to study issues such as acid deposition, tropospheric ozone, or PM require their input emissions to be speciated on the model's grid, while accounting for temporal variations and meteorological conditions [e.g., Russell and Dennis, 2000]. National emission inventories, on the other hand, typically tabulate emissions of the so-called criteria air contaminants or CACs (sulfur dioxide (SO2), nitrogen oxides (NOx), total “VOC”, carbon monoxide (CO), ammonia (NH3), PM with diameters less than 2.5 μm (PM2.5), and PM with diameters less than 10 μm (PM10)) by jurisdiction (e.g., state, county, and province) on an annual or seasonal basis. The criteria “VOC” species in the CAC inventories is the sum of all gaseous organic compound emissions from the given source. This total must be split into individual organic species as described below in order to be useful in an air quality model. Emissions processing systems are collections of computer programs used to link the criteria air contaminants with information on chemical speciation and spatial and temporal variations. This is accomplished by combining and transforming existing emissions inventories into air quality model-compatible data files on a source-type-by-source-type basis [e.g., Dickson and Oliver, 1991; Houyoux et al., 2000].

[11] The regional emissions processing system employed in this study is the Canadian Emissions Processing System (CEPS) [see Moran et al., 1997; Scholtz et al., 1999]. Two national emissions inventories were processed and merged in order to calculate gridded, speciated organic compound emission and primary PM2.5 emission estimates for eastern North America: the 1990 Canadian national CAC emissions inventory [Deslauriers, 1996] and the 1990 U.S. national CAC emissions inventory [U.S. EPA, 1993].

[12] As shown in Figure 2, the three main transformation steps that must be considered in an emissions processing systems are chemical speciation, temporal disaggregation, and spatial disaggregation. Aspects of the CEPS processing of the two 1990 national inventories that are directly relevant to this study are briefly summarized here. Further details are provided in two technical reports [Scholtz et al., 2000; Scholtz, 2001].

Figure 2.

Stages in the processing of organic compound emissions in CEPS (adapted from Dickson and Oliver [1991]).

2.1. Treatment of Biogenic Emissions

[13] The strong variations of biogenic emissions with meteorological conditions and season argue for day-specific treatment of these emissions for air quality modeling, although annual estimates of organic compound emissions from biogenic sources are sometimes contained in national CAC emission inventories. Biogenic emissions processing is carried out in CEPS with CBEIS2, a modified version of BEIS2 (Biogenic Emissions Inventory System version 2) [see Pierce et al., 1998].

[14] The choice of time period for estimating biogenic emissions is important since the BEIS2 algorithms depend strongly on surface temperature and, for isoprene, on levels of photosynthetically active radiation (PAR). Summer meteorological conditions were represented in this study by gridded daily average temperature and PAR for a summer day, 15 July 1988, while winter meteorological conditions were represented for a second day, 15 December 1988. The resulting biogenic organic compound emission estimates should thus be viewed as illustrative for the purpose of order of magnitude comparisons with anthropogenic organic compound emissions; they are not seasonal averages. Seasonality may also have a significant impact on basal emission rates [Fuentes et al., 1996], but this effect has not been characterized for the majority of tree species, and has not been included into the CBEIS2 calculations. Further details of the biogenic emissions processing are given in section 5, along with a discussion of the speciation of the biogenic organic compounds.

2.2. Chemical Speciation of Anthropogenic Organic Compound Emissions

[15] The methodology to speciate the criteria “VOC” emissions in the national emission inventories follows from the premise that the relative amounts of organic compounds emitted from a source will depend on the type of source. Total organic compound emissions in each of the three main anthropogenic emissions files (point, area, and on-road mobile: see left-hand side of Figure 2) are reported by source type, where source type is denoted by one of approximately 10,000 process classification codes. Each of these process classification codes is linked in turn to one of approximately 600 organic compound source speciation profiles. These profiles split the criteria “VOC” emission into up to 822 individual organic compounds through the use of profile weights (mass fraction of individual compound per unit mass of criteria “VOC”). This disaggregation step from criteria “VOC” emissions to emissions of individual organic compounds is followed by an aggregation or “lumping” step from emissions of these individual species to emissions of model organic compounds. In this step, many of the 822 individual organic compounds are grouped or summed together in order to reduce the number of organics that must be represented in an air quality model. In earlier work during the National Acid Precipitation Assessment Program (NAPAP), Middleton et al. [1990] designed a scheme to combine individual organic compounds into 32 organic compound classes based on equivalent reactivity. Here, a new scheme with 81 organic compound classes was used (described below).

2.3. Temporal and Spatial Disaggregation of Anthropogenic Organic Compound Emissions

[16] The method for temporal allocation of the emissions by process classification code used by CEPS is analogous to that used for organic speciation: a temporal-profile library consisting of generic monthly, weekly, and daily temporal-profile weights is linked to each process classification code. Organic compound emissions tagged by process code are then scaled by the appropriate month-of-year, day-of-week, and hour-of-day temporal-profile weights. The allocation for mobile sources includes calculations for enhanced evaporative emissions at higher summer temperatures.

[17] The spatial allocation or gridding of U.S. county and Canadian provincial area and mobile source emissions is accomplished using gridded surrogate quantities that are related as closely as possible to the distribution of the emission activities. A total of 15 of these surrogate fields are available in CEPS, with one linked to each process classification code. The surrogate fields include fractional jurisdictional area, population and housing density, and 12 land use categories. For example, the “agricultural” land use category is used to spatially allocate various agriculture emissions, whereas population density is used to spatially allocate on-road mobile emissions.

[18] The 23 BEIS1 vegetation biomass fields needed by CBEIS2 are also available on the same grid as the spatial surrogate quantities. This grid contains much of northeastern North America on a polar stereographic map projection with 21.167 × 21.167 km horizontal grid cells. Point source emissions are allocated spatially in a simpler manner, based solely on their latitude–longitude coordinates.

2.4. Primary Emissions of Particulate Nonvolatile Organic Compounds

[19] The above sections deal with the processing of the “criteria VOC” emissions. As noted earlier, primary PM2.5 particle emissions are currently available only as a net PM2.5 mass emission. This net mass must be split into inorganic and organic compounds in the absence of sufficient source-specific splitting factor profiles. A small number of speciation profiles that resolve the organic compounds present in primary particle emissions are available, from measurements in the Los Angeles area [Schauer et al., 1996]. This data has yet to be incorporated into national-level emissions inventories, and the relative representativeness of the 15 profiles given by Schauer et al. [1996] toward the 600 source types of the national inventories has yet to be determined. Here, 26% of the total primary PM2.5 mass emitted is assumed to be composed of organic compounds for all anthropogenic source streams [Possiel et al., 2001]. As will be shown below, the primary organic compound particle emissions, while being the least well-characterized portion of the net organic emissions, may have the greatest impact on organic particle creation.

3. Chemical Classification

[20] CEPS was reconfigured to produce 10 “inorganic” species (NO, NO2, SO2, SO4, CO, NH3, PM2.5, PM10, and HONO) and 81 lumped organic species classes. The PM categories refer to net (inorganic + organic) primary PM emissions. The choice of individual organic compound species to serve as representative species for the various multiple-species classes was based on chemical structure, molecular mass, and gas-phase reactivity, as opposed to reactivity alone. Reactivity is also closely linked with structure; one effect of increasing the number of (structure-based) emitted organic compounds is to decrease the range of reactivities of the compounds within any given emitted organic compound class. The new 81-class organic speciation is presented in Table 1, and is referred to as the “AURAMS81” organic compound set, after the air quality model for which they have been developed [see Moran et al., 1998]. Details of the choice of representative species appear in the footnotes following Table 1. The number of compounds in the new classification scheme is considered to be a reasonable upper limit in order to resolving both reactivity and particle formation effects in current air quality models. However, further lumping may be required in the context of air quality models, depending on the computer memory space and processing time available for simulations [e.g., Middleton et al., 1990].

Table 1. AURAMS81 Organic Compound Emission Classesa
NumberNameDescriptionRepresentative SpeciesMolecular Mass (g mol−1)kOH (10,000 ppm−1 min−1)Type
  • a

    Classification letters used in “Type” column: “A”: Single-species classes, detailed chemistry known and abundant emissions, “B”: Multiple-species class includes compounds with similar molecular structures and/or reactivities, “C”: Species class with members known to be semivolatile or nonvolatile, “D”: Species classes with similar structures/reactivities and known to have semivolatile and nonvolatile oxidation products, and “E”: Highly soluble species classes may partition to aqueous aerosols.

    Comments: Reasoning for choice of representative species for a given emitted species class. 4 NI4A = n-Butane. Simplest and hence “best understood” member of the class. Note higher reactivity for cyclopentane, potential for further subdivision. OH reactivities of others in the class are within 60% of n-Butane value. 6 TE7A = Heptane. Many possible compounds within class. C7 chosen as midway mass value. Reaction rate is for 2,2,4-trimethylpentane (one of the C8's included in Table 2). Typical tert-alkane C7's have a similar reaction rate; e.g., 223-trimethyl butane 4.32E−12 (NIST) compared to 2,2,4-trimethylpentane's 3.85E−12). 7 NI7A = n-Heptane. Again, midway mass value. n-Heptane rate also roughly in middle of range of OH rate constants; other members will be within 25% of the n-Heptane rate. 8 C9AL = n-Nonane. Simplest of many species. Known OH reactivities within 23% of -Nonane value. 9 C14A = n-tetradecane. C14 chosen for midrange mass of class of compounds. Known OH reactivities of remainder of class within 29% of n-tetradecane value. 10 C20A = Eicosane. Simplest member (and smallest carbon number member) of class. Although most mass is likely to be in this class (from examination of emission profiles such as diesel exhaust), the fraction in the upper carbon numbers {>C25} may have an important impact on particle formation. Hexadecane largest alkane for which OH rates are available. 13 E4AL = methylpropene. OH rate midrange (all others within 33% of methylpropene). When branching is identified, branched alkenes more common in terms of number of species than n-1-alkenes in this class. 14 I4AL = trans-2-butene. OH rate midrange (all others within class within 13%, except one outlier; 2-methyl-2-butene, 57% higher). Also one of the simpler compounds in the class. 15 E7AL = 2-Ethyl-1-Butene. OH rate midrange (all others within 30%). Slightly more branched than nonbranched species in class, hence a branched species was chosen as a representative. 16 I7AL = 3-Ethyl-2-Pentene. OH rate midrange (all others within 42%). More branched compounds than unbranched, so branched compound chosen. C7 chosen for midrange mass in the class. 17 E9AL = 1-Decene. Only compounds in class are C9, C10, and C11. C10 (decene) only one for which OH rate constant is known (others likely to be similar). 18 I9AL = E-C3H7C(CH3)C(CH3)C2H5. One of the few compounds within this class for which kinetics data are available. OH rate constant is within 5% of the three other species for which rates could be obtained. 19 C4DI = 1,3-Butadiene. Only three compounds lumped into class, and large range of reactivities (other two within 64% of 1,3-Butadiene value). However, net mass and reactivity contribution of this class is low. Might be worth speciating further in the future if anthropogenic dialkenes are of interest. 21 C5DI = Pentadiene. Large range of OH reactivities (50% to double chosen midrange value). Lower molecular mass expected to dominate. Overall contribution to mass and reactivity of this class is small. 24 MALK = n-Propylbenzene. One of the simplest of many species in class. Known OH reactivities of other species in class within 32% of this representative species; exception Indane, 3 times higher than n-Propylbenzene. 25 ALAR = Styrene. Simplest species in class and one of two for which OH rate constants are known (other's rate is 26% lower than styrene's). 26 DIAR = p-Xylene. Xylenes are simplest of the species making up this class. OH rate of p-Xylene is one of the higher ones (lowest 46% lower than p-Xylene value). Possible candidate for future subdivision into more species. 27 TriR = 1,2,4-Trimethylbenzene. Trimethylbenzenes are simplest compounds in class. Only three species in class have known OH rate constants, 1,2,4- and 1,2,3- have similar rate (<1% difference) while 1,3,5-trimethylbenzene has rate 79% higher. Possible candidate for future subdivision into more species. 29 HICP = di-Butyl-Phthalate. Only two species in class, dibutyl and dioctyl. Lower carbon number expected to be more abundant. Reactivities of both unknown, p-Xylene's rate used as a surrogate for reactivity. 30 LOCP = Phthalic Anhydride. Simplest of species in class. Rate constants unknown; p-Xylene's rate used as a surrogate for reactivity. 31 HIPA = Anthracene. Midrange in mass of class. Large variation in rates estimated by different researchers for individual compounds in this class; range from 5 × 10−11 to 1.9 × 10−10. Anthracene rate is from recent data (1998), earlier estimates were lower. 32 LOPA = Fluorene. Midrange in mass for class. OH reactivities range from 7.7 × 10−12 to 2.7 × 10−11. Naphthalene rate (2.3 × 10−11) used as midrange value. 33 BIPH = Biphenyl. Simplest member of small number of species in class, only one for which OH reactivity is known. Very small contribution to mass and reactivity. 34 HLPA = Chrysene. Midrange in mass for class. No reactivity information available for any compound in the class; Anthracene rate used as a surrogate. 36 CRES = o-Cresol. Simplest in class, and only one for which reactivity information is available. Expected to be the most abundant. 41 C4AD = Isobutyraldehyde. Simplest compound in class of C4 and C5 aldehydes. Midrange OH reaction rate for known species in class. Note that rate of only C5 in class is 55% higher. 42 C6AD = Hexanal. Only two compounds in class (C6 and C7), OH rates unavailable. Isovaleraldehyde (C5) rate used as nearest structural compound for which rate is known. 43 ARAD = Benzaldehyde. Simplest of three compounds, and only one for which OH rate is known. Others expected to have similar reaction rates. 46 FURN = Ethyl Furan. Four species in class, two known rates differ by 80%. Low total anthropogenic mass. Further subdivision into anthropogenic and biogenic might be warrented, given large biogenic contribution. 47 C4KT = Methyl Ethyl Ketone. Simplest compound in class. 48 C6KT = Methyl Amyl Ketone. Midrange reactivity, molecular mass. 51 C3AC = Propionic Acid. One of two species, only one for which OH rate known. 52 C4AC = Decanoic Acid. Mass chosen as midrange in large class. Heptane rate used, more reactivity data needed for large molecular mass acids. 53 DIAC = Adipic Acid. One of three diacids in class; midrange in mass. OH rates unknown; using rate for hexane (same carbon number) as a surrogate. 55 C3YN = 1-Butyne. Midrange reactivity for class (Note that one member, 2-Butyne, is 2 times higher). Total mass contribution low. 58 PROH = iso-Propanol. OH rates of two C3 alcohols very similar; same mass. 59 C4OH = n-Butyl Alcohol. OH rate midrange (others within 26%, except tert-Butyl Alcohol, 1 order of magnitude lower). Simplest compound in class. 61 C5ET = Ethyl-tert-Butyl Ether. Midrange reactivity. 63 DTOH = Propylene Glycol. Midrange mass. No reaction rates in NIST [1998] database. Rate from estimate by Middleton et al. [1990]. 64 LEST = Dimethylbutanedioate. Midrange OH rate (large variation; 1 order of magnitude lower to 1 order of magnitude greater). Midrange mass. 65 HEST = Methyl Cellosolve. Simplest compound out of large class, midrange OH rate. Note that biogenics dominate in summer; good candidate for splitting into high and lower molecular mass class. 66 LAMN = Acrylonitrile. Midrange reactivity for large range of species' reactivities (range ±80%). 67 HAMN = Dimethylamine. Midrange reactivity for large range of species' reactivities (range ±78%). 71 TPL1 = D-3-Carene. Two known reactivities in class of four species; D-3-Carene generally more abundant in biogenic emission factors. 72 TPG1 = D-Limonene. Midrange reactivity in class (others within 26%). D-Limonene generally more abundant in biogenic emission factors. 73 EPOX = Propylene Oxide. Only two members in class. Large variation in rates, but contributions to mass and reactivity very small. 74 LHAL = Dichlorotetrafluoroethane. Midrange OH reactivity of very large range of OH reactivities in class (all very low reactivity and molecular mass, unlikely to impact on either particle or O3 formation). Contribution to organic compound mass and reactivity small. 75 MHAL = 1-Chlorobutane. Midrange OH reactivity of large range of OH reactivities, midrange in mass. Contribution to organic compound mass and reactivity small. 76 HHAL = 1,1-Dichloroethene. One of three species, two of which have known OH reactivities (other 40% lower). Contribution to organic compound mass and reactivity small. 77 HARO = o-Dichlorobenzene. Midrange in mass (number of Cl substitutions). Large range in OH reactivities. Contribution to organic compound mass and reactivity small. 78 CREO = Creosote. Three species lumped (creosote, mineral spirits, and naphtha) are all mixtures of many organic compounds., two are C8, one C12. C8 species (creosote) chosen, and octane OH reaction rate adopted. 79 FURD = 2,5 Furandione. One of two species in this class; furfural and furfuryl alcohol. Furandione used since this species may be produced via oxidation reactions (i.e., may be included in future chemical mechanisms). Note that class is dominated by biogenics (biogenic species are furanones, not alcohols). 80 ALAD = Acrolein. Simplest and most studied of class. OH reactivity half of only other known OH reactivity in class.

1METHMethaneCH416.04289.36E−04A
2ETHAEthaneC2H630.06963.68E−02A
3PROPPropaneC3H844.09651.61E−01A
4NI4AC4–5n, iso Alkanesn-Butane58.12343.53E−01B
5TE4AC4–5tert Alkanesneo-C5H1258.12341.17E−01A
6TE7AC6–8tert AlkanesHeptane mass, 2,2,4-Trimethyl Pentane rate (C7 similar)100.2045.69E−01B
7NI7AC6–8n, iso Alkanesn-Heptane100.2041.21E+00B
8C9ALC9–10 Alkanesn-Nonane128.2581.46E+00B
9C14AC11–19 Alkanesn-Tetradecane198.3922.85E+00B
10C20AC20+ AlkanesEicosane (hexadecane rate)282.5533.69E+00C
11ETHEEtheneEthene28.05381.39E+00A
12PRPEPropenePropene42.08061.92E+00A
13E4ALEnd C4–5 AlkenesMethylpropene56.10756.94E+00B
14I4ALInternal C4–5 Alkenestrans-2-Butene56.10757.83E+00B
15E7ALEnd C6–8 Alkenes2-Ethyl-1-Butene98.18828.27E+00B
16I7ALInternal C6–8 Alkenes3-Ethyl-2-Pentene98.18821.42E+01B
17E9ALEnd C9–19 Alkenes1-Decene126.2425.17E+00D
18I9ALInternal C9–19 AlkenesE-C3H7C(CH3) = C(CH3)C2H5126.2422.26E+01B
19C4DIC3–4 Dialkenes1,3-Butadiene54.09168.57E+00B
20ISOPIsopreneIsoprene68.11851.49E+01A
21C5DIC5+ Dialkenes (nonisoprene)Pentadiene68.11851.23E+01B
22BENZBenzeneBenzene78.11361.76E−01A
23TOLUTolueneToluene92.14058.12E−01A,D
24MALKC2+ Monoalkyl Aromaticsn-Propylbenzene120.1948.42E−01D
25ALARAlkene-AromaticsStyrene104.1521.57E+01D
26DIARDialkyl Aromaticsp-Xylene106.1671.92E+00D
27TRIRTrialkyl Aromatics1,2,4-Trimethylbenzene120.1944.80E+00D
28NAPTNaphthaleneNaphthalene128.1743.40E+00A
29HICPHigh-Carbon-Number Alkyl PhthalatesDibutyl Phthalate (p-Xylene rate)278.3481.92E+00C
30LOCPLow-Carbon-Number Alkyl Phthalates, Phthalic AnhydridesPhthalic Anhydride (p-Xylene rate)148.1181.92E+00D
31HIPAHigh-Reactivity PAH (≥5E−11)Anthracene178.2332.81E+01D
32LOPALow-Reactivity PAH (<5E−11)Fluorene166.2241.92E+00D
33BIPHBiphenylBiphenyl154.2111.14E+00B
34HLPAHigh-reactivity, low-vapor-pressure PAHChrysene, Anthracene rate228.2932.81E+01C
35PHENPhenolPhenol94.11303.84E+00A,C
36CRESAlkyl Phenolso-Cresol108.1407.24E+00C
37HCHOFormaldehydeFormaldehyde30.02631.36E+00A
38MCHOAcetaldehydeAcetaldehyde44.05322.39E+00A
39ACETAcetoneAcetone58.08002.81E−02A
40PALDPropionaldehydePropionaldehyde58.08002.95E+00A
41C4ADC4–5 AldehydesIsobutyraldehyde72.10693.81E+00B
42C6ADC6+ AldehydesHexanal (Isovaleraldehyde rate)100.1615.91E+00C
43ARADAromatic AldehydesBenzaldehyde107.1321.77E+00C
44GLYXGlyoxalGlyoxal58.03671.70E+00A
45MGLYMethyl GlyoxalMethyl Glyoxal72.06362.56E+00A
46FURNFuransEthyl Furan70.09101.60E+01C
47C4KTC4–5 KetonesMethyl Ethyl Ketone72.10691.44E−01B
48C6KTC6+ KetonesMethyl Amyl Ketone114.1881.28E+00B,C
49FMACFormic AcidFormic Acid46.02576.65E−02A,E
50ACACAcetic AcidAcetic Acid60.05261.18E−01A,E
51C3ACC3 AcidsPropionic Acid74.07941.77E−01E
52C4ACC4+ AcidsC10 Acid, Heptane rate130.1871.21E+00E
53DIACDiacidsAdipic Acid (rate from Hexane)146.1437.98E−01C
54C2H2AcetyleneAcetylene26.03791.15E−01A
55C3YNC3+ Alkynes1-Butyne54.09161.07E+00B
56MEOHMethanolMethanol32.04221.37E−01A,E
57ETOHEthanolEthanol46.06904.79E−01A,E
58PROHPropanolIsopropyl Alcohol60.09598.12E−01E
59C4OHC4+ Alcoholsn-Butyl Alcohol74.12281.60E+00B,C
60DMETDimethyletherDimethyl Ether46.06904.27E−01A
61C5ETC3–7 EthersEthyl-tert-Butyl Ether88.14972.17E+00B
62C8ETC8+ EthersDibutyl Ether130.2304.27E+00A
63DTOHDialcohols and TrialcoholsPropylene Glycol Mass (Middleton et al. rate)76.09531.77E+00B,E
64LESTLow-Reactivity Esters (<5E−12)Dimethylbutanedioate146.1432.07E−01B,E
65HESTHigh-reactivity Esters (≥5E−12)Methyl Cellosolve76.09531.68E+00B,E
66LAMNLow-Reactivity Amines and Amides (<5E−11)Acrylonitrile53.06361.26E+00B
67HAMNHigh-Reactivity Amines and Amides (≥5E−11)Dimethylamine45.08439.79E+00B
68THOLThiolsEthyl Mercaptan62.13566.87E+00A
69APINAlpha-PineneAlpha-Pinene136.2377.86E+00A,D
70BPINBeta-PineneBeta-Pinene136.2371.11E+01A,D
71TPL1Low-Reactivity Terpenes (<1E−10)Δ-3-Carene136.2371.34E+01D
72TPG1High-Reactivity Terpenes (>1E−10)Δ-Limonene136.2372.50E+01D
73EPOXEpoxidesPropylene Oxide58.08007.31E−02B
74LHALLow-Reactivity Halocarbons (<1E−13)Dichlorotetrafluoroethane170.9217.38E−05B
75MHALMedium Reactivity Halocarbons (1E−13)1-Chlorobutane92.56822.47E−01B
76HHALHigh-Reactivity Halocarbons (≥5E−13)1,1-Dichloroethene96.94331.65E+00B
77HAROHalo-Aromaticso-Dichlorobenzene147.0036.20E−02B
78CREOPetroleum Distillation SpiritsCreosote (rate from n-C8H18)114.2311.35E+00B,C
79FURDFurandiones and related compounds2,5-Furandione (similar to furfural)98.05816.79E+00C
80ALADAlkene-CarbonylsAcrolein56.06002.81E+00B
81UNKNUnknown species; insufficient information to classify    

[21] The reasoning behind the choice of the 81 organic compound emission classes is given below. The process of linking the 822 possible individual organic compounds contained in the CEPS organic compound speciation profile database to these 81 lumped organic compound classes (see Figure 2) is described in sections 4 and 5.

3.1. Single-Species Classes: Detailed Chemistry Known and Abundant Emissions (Type “A”)

[22] The 24 emitted species classes included in this group (Table 1) were considered to have a sufficiently unique chemical structure, a sufficiently well understood set of oxidation pathways, and/or high enough ambient concentrations to warrant the use of a unique species as opposed to a representative or generic class. Usually only one compound ID number (the Storage And Retrieval Of Air quality Data (SAROAD) code; see section 4) was assigned to each of these emissions classes. This set of single-species classes includes the five single-species classes considered in the NAPAP organic compound speciation scheme plus five of the other seven organic species recommended for future individual treatment by Middleton et al. [1990] on the basis of their large emissions.

3.2. Multiple-Species Classes: Similar Molecular Structures and/or Reactivities (Type “B”)

[23] Each of the 32 emitted species classes of this type represent a group of compounds that have sufficiently similar properties that lumping on a mass basis is warranted. The range of range of integers after the “C” in the names of some of these classes indicates the range of carbon numbers within the given class. Further explanation is required for some of these classes:

  1. Alkanes: The alkanes were separated into classes by number of carbon atoms and structure, to preserve OH reactivity, molecular mass, and structure to a greater degree than previous speciations. Alkanes with (n-) and (iso-) arrangements of the carbon chain typically have 2–3 times higher reactivities than tert-Alkanes [Atkinson, 1986; NIST, 1998]. This is illustrated by the example reaction rates shown in Table 1. Reactivity also varies with carbon number, with higher-carbon-number Alkanes tending to have higher OH rate constants [NIST, 1998]. Previous classifications for the higher-carbon-number Alkanes (C>8) usually did not resolve structure. Here, the C9–10 and C11–19 classes were retained on the basis of similar reactivity. Alkanes with carbon numbers greater than or equal to 20 are semivolatile (see below).
  2. Alkenes: Alkenes with the double carbon bond at the end of a carbon chain (End-Alkenes, also known as “1-Alkenes”) tend to have lower reactivities than those with the double bond within the chain (Internal Alkenes). This difference becomes more pronounced with increasing carbon number. The alkenes were therefore allocated according to both carbon number and structure (end or internal bond). End-Alkenes with carbon numbers higher than eight may result in semivolatile and nonvolatile products after oxidation (see below).
  3. Dialkenes: These species have relatively high reactivities (known OH rates are usually close to 1 × 10−10 mol−1 cm−3 s−1) and two double carbon bonds in their molecular structure. One dialkene, isoprene has been studied extensively due to its high magnitude biogenic emissions, and it has been assigned a separate organic compound class here. Less information is available on the reaction pathways for other anthropogenic dialkenes. As a result, only two other classes have been considered here; one with carbon numbers of 3–4, and one with carbon numbers of 5 or greater (excluding isoprene).
  4. Biphenyls: This group of compounds was considered to have a sufficiently unique structure (double aromatic ring linked by a single bond) to warrant a separate species class.
  5. Carbonyls (Aldehydes and Ketones): These species will be among the main oxidation products of the alkanes and alkenes. The decision was made to limit the number of these classes to four based on the species in the detailed emissions database (see Table 2): C4–5 and C6+ classes for each subclass of carbonyl.
  6. Alkynes: Alkynes with carbon numbers greater than 2 have been shown in measurement studies [Atkinson, 1986; NIST, 1998] to have much higher reactivities than acetylene. The overall emission of nonacetylene alkynes (on either a mole or mass basis) is relatively small; as a consequence, only one species class appeared warranted for these compounds.
  7. C4+Alcohols: Higher-carbon-number alcohols are emitted in lower quantities than ethanol or methanol, and most of those in the detailed emission speciation have reactivities close to 1 × 10−11 mol−1 cm−3 s−1; a single class was used to represent these species.
  8. Ethers: Two classes were chosen for higher-carbon-number ethers (beyond dimethyl ether) based on the detailed emission speciation and the reaction rates for those species. The ethers contain a single oxygen atom within a longer carbon chain (R-O-R). Ethers with carbon numbers between 3 and 7 have OH reaction rates close to 1.5 × 10−11 mol−1 cm−3 s−1, whereas the single available higher-carbon-number ether reaction rate is 2.9 × 10−11 mol−1 cm−3 s−1. Two classes were therefore considered sufficient to resolve these species.
  9. Dialcohols and Trialcohols: This class was created since these species all have very high solubilities and may partition significantly to aqueous aerosols or deposit to water surfaces. The class includes all compounds containing two or more alcohol groups.
  10. Esters: Relatively little smog-chamber work has been performed to determine the reaction pathways for these species, which include a -C(=O)-O- group within their molecules. Their unique structure was considered sufficient cause to speciate them into high-reactivity and low-reactivity classes (an OH reaction rate of 5 × 10−12 mol−1 cm−3 s−1 was used to separate the species on the basis of reactivity).
  11. Amines and Amides: As was the case for Esters, the Amines and Amides have not experienced the same degree of study as other hydrocarbons. Structurally, these compounds have at least one nitrogen atom within the molecule. Here, an OH reaction rate of 5 × 10−11 mol−1 cm−3 s−1 was used to split the Amines/Amides into low-reactivity and high-reactivity classes.
  12. Thiols: These compounds were assigned a unique class based on their structure; all species containing a mercapto group (R-SH) are included.
  13. Epoxides: A unique class was assigned to these species on the basis of structure (the class includes all compounds containing a group). Epoxides also have different reaction pathways and lower reaction rates than the closest similar class (Ethers).
  14. Halocarbons: These species are not believed to have a significant contribution to net organic compound reactivity or organic aerosol formation but have been represented here due to their unique chemical structures, and potential interest in their use as low-reactivity tracers of industrial activity. They have been assigned to high-reactivity, medium-reactivity, and low-reactivity classes (OH reactivities of greater than 5 × 10−12, 5 × 10−12 to 1 × 10−13, and less than 1 × 10−13 mol−1 cm−3 s−1, respectively).
  15. Haloaromatics: The classification of haloaromatics as a separate category was made due to their unique structure, incorporating both a benzene ring and halogen atoms.
  16. Petroleum Distillation Spirits: This group includes species such as Naptha, Creosote, and Mineral Spirits. These species have a common origin (petroleum and coal industries) and similar chemical and physical properties. Usually these “species” are mixtures of many compounds produced in the refining process.
  17. Alkene-Carbonyls: These species were resolved as a class due to their unique structure, which contains both a reactive double bond and a carbonyl group.
Table 2. Individual Organic Compound Assignments to AURAMS81 Organic Compound Classes and Auxiliary Physical and Chemical Dataa
NumberSAROADNamekOH NIST98kOH (year)NAP AP35CAS CodeCHONClBrFSSiM massSMILES structureYaw's NumberF. Pt (K)B. Pt (K)Sol. Temp (°C)H2O Sol. (ppm mol)P(298) (mm Hg)
  • a

    Several modifications and corrections to the table were made during typesetting. All of the compounds considered have a low contribution to either ozone or particle formation, and the changes are aimed at placing these species into more structurally appropriate groups. Species 70020 (hexenal) had been classified into AURAMS species 21 (Dialkenes); this has been changed to AURAMS species 80 (Alkene-carbonyls); the latter being structurally correct, while the original classification preserved OH reactivity to a greater degree. Species 45801, 45805, 45806, 45807, 45808, 45810, 45830, and 45831 were originally classified as AURAMS species 75 (Medium-Reactivity Halocarbons), whereas a more appropriate classification (structurally), with the same reactivity, is the AURAMS species 77; Haloaromatics. Species 43559 and 43560 were classified as AURAMS species 47 (C4–5 Ketones), while AURAMS species 48 (C6–8 Ketones) is a more appropriate group for these compounds, despite a higher OH reactivity for 43560 than other species of AURAMS class 48. Ethylene oxide (43601) was included into the Low-Reactivity Halocarbon group (74) due to its low reactivity, whereas the Epoxide group (73) is a more appropriate location based on structural considerations. Finally, Lactol Spirits (43119) was originally classified with AURAMS species 58 (Propanol), whereas a more appropriate structural classification is with AURAMS species 78 (Petroleum Distillation Products). The effect of these changes is insignificant with regards to the particle and ozone formation results discussed in this paper; for example, the Lactol Spirits emitted mass contributes less than 1% to either AURAMS species 58 or AURAMS species 78. The modifications were made here for the sake of preserving structural information, given their low contribution to the reactivity and particle formation potential of any given class.

143201Methane6.34E−151997174-82-814000000016.043C3890.67111.66252.7399E+014.534E+05
199101C1 Compounds (Diesel Exhaust)6.34E−1519973274-82-814000000016.043C3890.67111.66252.7399E+014.534E+05
243202Ethane2.49E−131997274-84-026000000030.070CC12790.35184.55253.6187E+013.136E+04
343204Propane1.09E−121998374-98-638000000044.097C(C)C21185.46231.11252.5494E+017.135E+03
443122Isomers of Pentane3.85E−1219985109-66-0512000000072.150C(CCC)C      
443139Paraffins (C2–C7)  32 511000000071.142       
443144C5 Paraffin3.85E−1219985109-66-0512000000072.150C(CCC)C      
443212n-Butane2.39E−1219984106-97-8410000000058.123C(CC)C321134.86272.65251.9031E+011.821E+03
443214iso-Butane2.13E−121998475-28-5410000000058.123C(C)(C)C322113.54261.43251.5157E+012.645E+03
443220n-Pentane3.85E−1219985109-66-0512000000072.150C(CCC)C440143.42309.22259.6133E+005.108E+02
443221iso-Pentane3.85E−121998578-78-4512000000072.150C(CC)(C)C438113.25300.99251.1936E+016.851E+02
443242Cyclopentane4.80E−1219985287-92-3510000000070.134C(CCC1)C1403179.31322.40254.0076E+013.159E+02
443262Methylcyclopentane  696-37-7612000000084.161C(CCC1)(C1)C561130.73344.96259.1276E+001.365E+02
490021Methylpropane2.13E−121998475-28-5410000000058.123C(C)(C)C322113.54261.43251.5157E+012.645E+03
498132Isopentane3.85E−121998578-78-4512000000072.150C(CC)(C)C      
499104C4 Compounds (Diesel Exhaust)  32 49000000057.115       
499105C5 Compounds (Diesel Exhaust)  32 511000000071.142       
4.5, 13.543145C5 Paraffin/Olefin  32 511000000071.142       
54322222-Dimethylpropane7.89E−1319913463-82-1512000000072.150C(C)(C)(C)C      
59813022-Dimethylpropane7.89E−1319913463-82-1512000000072.150C(C)(C)(C)C      
643250224-Trimethylpentane3.85E−1219915540-84-18180000000114.231C(CC(C)C)(C)(C)C843165.78372.39253.3789E−014.899E+01
643280233-Trimethylpentane  6564-02-38180000000114.231 844172.22387.92251.3938E−012.679E+01
64328722-Dimethylhexane1.05E−1219856590-73-88180000000114.231 829151.97379.99252.2004E−013.378E+01
64329122-Dimethylbutane2.60E−121991475-83-2614000000086.177C(CC)(C)(C)C596174.28322.88254.9796E+003.177E+02
69004033-Dimethylpentane  6562-49-27160000000100.204C(CC)(CC)(C)C745138.70359.21251.0679E+008.214E+01
690092Trimethylpentane3.85E−1219915540-84-18180000000114.231C(CC(C)C)(C)(C)C, etc.843165.78372.39253.3789E−014.899E+01
69813822-Dimethylhexane1.05E−1219856590-73-88180000000114.231 829151.97379.99252.2004E−013.378E+01
6.543105Isomers of Hexane5.40E−1219985110-54-3614000000086.177C(CCCC)C, etc.      
6.543106Isomers of Heptane8.20E−1219826142-82-57160000000100.204C(CCCCC)C, etc.747182.57371.58254.0272E−014.524E+01
6.543107Isomers of Octane9.12E−1219866111-65-98180000000114.231C(CCCCCC)C, etc.841216.38398.83256.7972E−021.393E+01
6.543141C8 Paraffin9.12E−1219866111-65-98180000000114.231C(CCCCCC)C, etc.841216.38398.83256.7972E−021.393E+01
6.543142C7 Paraffins8.20E−1219826142-82-57160000000100.204C(CCCCC)C, etc.747182.57371.58254.0272E−014.524E+01
6.543231Hexane5.40E−1219985110-54-3614000000086.177C(CCCC)C      
6.543232Heptane8.20E−1219826142-82-57160000000100.204C(CCCCC)C, etc.747182.57371.58254.0272E−014.524E+01
6.543233Octane9.12E−1219866111-65-98180000000114.231C(CCCCCC)C, etc.841216.38398.83256.7972E−021.393E+01
743115C7 Cycloparaffins1.18E−1119986291-64-5714000000098.188C1CCCCCC1703265.15391.94255.5044E+002.144E+01
743116C8 Cycloparaffins1.29E−1119986292-64-88160000000112.215C1CCCCCCC1      
743126C2 Cyclohexane  7583-57-38160000000112.215 805223.16402.94259.6325E−011.436E+01
7432292-Methylpentane5.64E−1219865107-83-5614000000086.177C(CCC)(C)C599119.55333.41252.8849E+002.100E+02
7432303-Methyl Pentane6.14E−121986596-14-0614000000086.177C(CC)(CC)C600110.25336.42253.7441E+001.888E+02
74324724-Dimethylpentane  6108-08-77160000000100.204C(CC(C)C)(C)C744153.91353.64257.9285E−019.771E+01
743248Cyclohexane7.20E−1219986110-82-7612000000084.161C(CCCC1)C1550279.69353.87251.2009E+019.782E+01
743252234-Trimethylpentane8.23E−1219886565-75-38180000000114.231C(C(C(C)C)C)(C)C845163.95386.62253.6304E−012.691E+01
743261Methylcyclohexane9.40E−1219986108-87-2714000000098.188C(CCCC1)(C1)C      
7432632-Methylhexane  6591-76-47160000000100.204C(CCCC)(C)C748154.90363.20254.5665E−016.555E+01
74327423-Dimethylpentane  6565-59-37160000000100.204C(C(CC)C)(C)C743-362.93259.4387E−016.838E+01
7432752-Methylhexane  6591-76-47160000000100.204C(CCCC)(C)C748154.90363.20254.5665E−016.555E+01
74327623-Dimethylbutane6.41E−121991579-29-8614000000086.177C(C(C)C)(C)C597145.19331.13254.2939E+002.339E+02
74327724-Dimethylhexane  6589-43-58180000000114.231 831-382.58251.8972E−013.011E+01
74327825-Dimethylhexane  6592-13-28180000000114.231CC(C)CCC(C)C832182.00382.26251.9324E−013.007E+01
743288Ethylcyclohexane  71678-91-78160000000112.215 811161.84404.95254.6781E−011.272E+01
74329023-Dimethylhexane  6584-94-18180000000114.231 830-388.76251.3274E−012.325E+01
7432953-Methylhexane  6589-34-47160000000100.204C(CCC)(CC)C749153.75365.00254.7463E−016.104E+01
7432962-Methylheptane  6592-27-88180000000114.231 838164.16390.80251.1787E−012.049E+01
7432974-Methylheptane  6589-53-78180000000114.231 840152.20390.86251.1746E−012.033E+01
7432983-Methylheptane  6589-81-18180000000114.231C(CCCC)(CC)C839152.60392.08251.2490E−011.944E+01
790026Methylpentane6.14E−121986596-14-0614000000086.177C(CC)(CC)C, etc.      
790028Methylhexane  6591-76-47160000000100.204C(CCCC)(C)C, etc.748154.90363.20254.5665E−016.555E+01
790038cis-14-Dimethylcyclohexane  7624-29-38160000000112.215 809185.72397.47257.2686E−011.779E+01
790045Methylheptane  6589-81-18180000000114.231C(CCCC)(CC)C, etc.839152.60392.08251.2490E−011.944E+01
790060Dimethylbutane6.41E−121991579-29-8614000000086.177C(C(C)C)(C)C, etc.      
790062Dimethylpentane  6565-59-37160000000100.204C(C(CC)C)(C)C, etc.743-362.93259.4387E−016.838E+01
790064Dimethylcyclopentane  61638-26-2714000000098.188 704203.36361.00254.1338E+007.561E+01
790067Dimethylhexanes  6563-16-68180000000114.231 833147.05385.12251.6391E−012.839E+01
790080Ethylmethylcyclopentane  761593-45-18160000000112.215       
790081Ethylhexane  6619-99-88180000000114.231C(CCC)(CC)CC835-391.69251.1190E−011.985E+01
790116Isopropylcyclopentane  323875-51-28160000000112.215       
79800123-Dimethylbutane6.41E−121991579-29-8614000000086.177C(C(C)C)(C)C597145.19331.13254.2939E+002.339E+02
798057Ethylcyclopentane  61640-89-7714000000098.188       
798058Trimethylcyclopentane  62815-58-98160000000112.215       
798059Dimethylcyclohexane  6583-57-38160000000112.215 805223.16402.94259.6325E−011.436E+01
798061Ethylcyclohexane  61678-91-78160000000112.215       
798064C2 Cyclohexane  6583-57-38160000000112.215 805223.16402.94259.6325E−011.436E+01
79813923-Dimethylhexane  6584-94-18180000000114.231 830-388.76251.3274E−012.325E+01
7981402-Methylheptane  6592-27-88180000000114.231 838164.16390.80251.1787E−012.049E+01
843108Isomers of Nonane9.89E−1219986111-84-29200000000128.258C(CCCCCCC)C, etc.943219.63423.97251.7136E−024.409E+00
843109Isomers of Decane1.22E−1119916124-18-510220000000142.285C(CCCCCCCC)C, etc.1018243.49447.30256.5838E−031.413E+00
843117C9 Cycloparaffins  7 9180000000126.242 904165.18429.76256.1472E−023.886E+00
843127C3 Cyclohexane  71678-92-89180000000126.242 909178.28429.90259.6646E−024.153E+00
843129C4 Substituted Cyclohexane  71678-93-910200000000140.269C(CCCC1)(C1)CCCC1011198.42454.13252.2833E−021.301E+00
843135C10 Paraffins1.22E−1119916124-18-510220000000142.285C(CCCCCCCC)C, etc.1018243.49447.30256.5838E−031.413E+00
843136C9 Paraffins9.89E−1219986111-84-29200000000128.258C(CCCCCCC)C, etc.943219.63423.97251.7136E−024.409E+00
843235Nonane9.89E−1219986111-84-29200000000128.258C(CCCCCCC)C, etc.943219.63423.97251.7136E−024.409E+00
843238n-Decane1.22E−1119916124-18-510220000000142.285C(CCCCCCCC)C1018243.49447.30256.5838E−031.413E+00
843271355-Trimethylhexane  32 9200000000128.258       
846753Decalins  791-17-810180000000138.253C(C(CCC1)CCC2)(C1)C21008230.20468.97251.1584E−017.780E−01
890002235-Trimethylhexane  61069-53-09200000000128.258 937145.36404.50254.6942E−021.164E+01
89000324-Dimethylheptane  62213-23-29200000000128.258 924160.16406.05254.2840E−021.022E+01
89000435-Dimethylheptane  6926-82-99200000000128.258C(CC)(CC(CC)C)C927170.26409.16253.5660E−029.135E+00
89000525-Dimethylheptane  62216-30-09200000000128.258 925160.16409.16253.5660E−029.032E+00
89000623-Dimethylheptane  6 9200000000128.258 923160.16413.66252.7356E−027.770E+00
8900082-Methyloctane  63221-61-29200000000128.258 940192.78416.43252.3246E−026.169E+00
890009245-Trimethylheptane  6 10220000000142.285 1056219.16429.66259.7099E−033.780E+00
8900153-Methyloctane  62216-33-39200000000128.258 941165.55417.38252.1986E−026.218E+00
8900164-Methyloctane  62216-34-49200000000128.258 942159.95415.59251.6153E−026.789E+00
890017Methylcyclooctane  61502-38-19180000000126.242       
890033Cyclopentylcyclopen  71636-39-110180000000138.253       
890047Methylnonane  6871-83-010220000000142.285 1019198.50440.15255.3614E−031.866E+00
890069Dimethylethylcyclohexane  63178-22-110200000000140.269       
890070Dimethyloctanes  62051-30-110220000000142.285 1029219.16433.54257.7788E−033.129E+00
890072Methylpropylcyclohexanes  799-82-110200000000140.269C(CCC(C1)C(C)C)(C1)C, etc.      
890073Methylisopropylcyclohexane  321678-98-410200000000140.269       
890077Ethyloctane  6 10220000000142.285 1023185.46439.66255.5099E−032.146E+00
890082Ethylmethylhexane  63074-76-89200000000128.258 931160.16413.76252.7195E−028.361E+00
890083Ethylmethylcyclohexane  730677-34-09180000000126.242       
890084Ethylheptane  322216-32-29200000000128.258 922159.96414.36252.6252E−027.369E+00
890086Ethylbicycloheptane  7 9160000000124.226       
890087Ethyldimethylpentane  61068-87-79200000000128.258       
890089Ethyldimethylcyclohexane  323178-22-110200000000140.269       
890094Trimethylheptanes  64032-93-310220000000142.285 1054219.16429.16259.9929E−033.692E+00
890098Tetramethylcyclopentane  7 9180000000126.242       
890101Butylcyclohexane  71678-93-910200000000140.269C(CCCC1)(C1)CCCC1011198.42454.13252.2833E−021.301E+00
890104Methyloctanes  62216-33-39200000000128.258 941165.55417.38252.1986E−026.218E+00
890111Isopropylmethylcyclohexane  799-82-110200000000140.269C(CCC(C1)C(C)C)(C1)C      
890115Trimethylhexanes  6921-47-19200000000128.258 936156.36412.20252.9811E−028.945E+00
890120Propylcyclohexane  61678-92-89180000000126.242 909178.28429.90259.6646E−024.153E+00
890121Methylethylheptane  613475-78-010220000000142.285CC(C)CCC(CC)CC1041219.16432.86258.0858E−033.088E+00
890122Tetramethylhexane  321071-81-410220000000142.285 1080260.56410.63252.9476E−028.692E+00
890128Isopropylcyclohexane  7696-29-79180000000126.242C(CCCC1)(C1)C(C)C907183.76427.91251.0837E−014.752E+00
898032355-Trimethylhexane  32 9200000000128.258       
898033225-Trimethylhexane  63522-94-99200000000128.258       
898060Trimethylcyclohexanes  73073-66-39180000000126.242C(CCCC1C)(C1)(C)C906188.76413.70252.4826E−016.554E+00
898062Diethylcyclohexane  71331-43-710200000000140.269CCC1(CC)CCCCC1      
898065C3 Cyclohexane  71678-92-89180000000126.242 909178.28429.90259.6646E−024.153E+00
898066C4 Cyclohexane  71678-93-910200000000140.269C(CCCC1)(C1)CCCC1011198.42454.13252.2833E−021.301E+00
898068C3 Alkylcyclohexane  71678-92-89180000000126.242 909178.28429.90259.6646E−024.153E+00
898069C4 Alkylcyclohexane  7 10200000000140.269 1011198.42454.13252.2833E−021.301E+00
898070C4 Substituted Cycl  71678-93-910200000000140.269C(CCCC1)(C1)CCCC1011198.42454.13252.2833E−021.301E+00
898073C4 Substituted Cycl  71678-93-90000000000.000C(CCCC1)(C1)CCCC 198.42 252.2833E−02 
898091Dimethylheptanes  6926-82-99200000000128.258C(CC)(CC(CC)C)C, etc.927170.26409.16253.5660E−029.135E+00
898141235-Trimethylhexane  61069-53-09200000000128.258 937145.36404.50254.6942E−021.164E+01
89814224-Dimethylheptane  62213-23-29200000000128.258 924160.16406.05254.2840E−021.022E+01
89814325-Dimethylheptane  62216-30-09200000000128.258 925160.16409.16253.5660E−029.032E+00
89814435-Dimethylheptane  6926-82-99200000000128.258C(CC)(CC(CC)C)C927170.26409.16253.5660E−029.135E+00
89814523-Dimethylheptane  6 9200000000128.258 923160.16413.66252.7356E−027.770E+00
8981462-Methyloctane  63221-61-29200000000128.258 940192.78416.43252.3246E−026.169E+00
898147245-Trimethylheptane  6 9200000000128.258       
898148Unk C9 Paraffin  6 9200000000128.258       
89814924-Dimethyloctane  6 10220000000142.285 1027219.16429.06251.0051E−023.608E+00
898150C10 Paraffins1.22E−1119916124-18-510220000000142.285C(CCCCCCCC)C, etc.1018243.49447.30256.5838E−031.413E+00
89815134-Dimethyloctane  6 10220000000142.285 1032219.16436.56256.5563E−032.644E+00
89990823-Dimethyloctane  67146-60-310220000000142.285 1026219.16437.47256.2289E−032.487E+00
89990926-Dimethyloctane  62051-30-110220000000142.285 1029219.16433.54257.7788E−033.129E+00
89991024-Dimethyloctane  6 10220000000142.285 1027219.16429.06251.0051E−023.608E+00
89991134-Dimethyloctane  6 10220000000142.285 1032219.16436.56256.5563E−032.644E+00
943110Isomers of Undecane1.37E−11198871120-21-411240000000156.312C(CCCCCCCCC)C, etc.1116247.57469.08255.0710E−034.070E−01
943111Isomers of Dodecane1.51E−1119887112-40-312260000000170.338C(CCCCCCCCCC)C, etc.      
943112Isomers of Tridecane1.75E−1119887629-50-513280000000184.365C(CCCCCCCCCCC)C, etc.1194267.76508.62251.9449E−045.508E−02
943113Isomers of Tetradecane1.93E−1119887629-59-414300000000198.392C(CCCCCCCCCCCC)C, etc.1222279.01526.73251.9977E−041.139E−02
943114Isomers of Pentadecane2.23E−1119887629-62-915320000000212.419C(CCCCCCCCCCCCC)C, etc.1245283.11543.83259.0386E−053.374E−03
943128C5 Cyclohexane  324292-92-611220000000154.296C(CCCC1)(C1)CCCCC1114215.66476.87256.8332E−033.933E−01
943130C5 Substituted Cyclohexane  74292-92-611220000000154.296C(CCCC1)(C1)CCCCC1114215.66476.87256.8332E−033.933E−01
943131C6 Substituted Cyclohexane  74292-75-512240000000168.323C(CCCC1)(C1)CCCCCC1161263.60497.86252.6968E−031.255E−01
943134Paraffins/Olefins (C12–C16)  32 14290000000197.384       
943137C16 Branched Alkane2.50E−11198871560-93-616340000000226.446       
943152C12H22    12220000000166.307C1CCCCCC = CCCCC1      
943155Isomers of Heptadecane  7629-78-717360000000240.473C(CCCCCCCCCCCCCCC)C, etc.1279295.13575.30251.1237E−042.237E−04
943156Isomers of Octadecane  7593-45-318380000000254.500C(CCCCCCCCCCCCCCCC)C, etc.1306301.33589.86251.4865E−041.702E−04
943241n-Undecane1.37E−11198861120-21-411240000000156.312C(CCCCCCCCC)C1116247.57469.08255.0710E−034.070E−01
943255n-Dodecane1.51E−1119887112-40-312260000000170.338C(CCCCCCCCCC)C1164263.57489.47253.9131E−041.340E−01
943258n-Tridecane1.75E−1119887629-50-513280000000184.365C(CCCCCCCCCCC)C, etc.1194267.76508.62251.9449E−045.508E−02
943259n-Tetradecane1.93E−1119887629-59-414300000000198.392C(CCCCCCCCCCCC)C1222279.01526.73251.9977E−041.139E−02
943260n-Pentadecane2.23E−1119887629-62-915320000000212.419C(CCCCCCCCCCCCC)C1245283.11543.83259.0386E−053.374E−03
946748Methyldecalins (Decahydromethylnaphthalene)  728258-89-111200000000152.280       
990030Hexadecane2.50E−1119887544-76-316340000000226.446C(CCCCCCCCCCCCCC)C1264291.34560.01257.1600E−051.409E−03
990031n-Heptadecane  7629-78-717360000000240.473C(CCCCCCCCCCCCCCC)C1279295.13575.30251.1237E−042.237E−04
990048Methyldecanes  72847-72-511240000000156.312       
990049Methylundecane  71002-43-312260000000170.338       
990055Pentylcyclohexane  74292-92-611220000000154.296C(CCCC1)(C1)CCCCC1114215.66476.87256.8332E−033.933E−01
990071Dimethylundecane  32 13280000000184.365       
990074Dimethyldecane1.51E−1119887 12260000000170.338       
990076Dimethylnonanes1.37E−1119887 11240000000156.312       
990085Ethylmethyloctane  7 11240000000156.312       
990090Ethylpropylcyclohexanes  7 11220000000154.296       
990096Trimethyloctanes  762016-34-611240000000156.312       
990097Trimethyldecane  749622-18-613280000000184.365       
990102Methylpropylnonane  762185-54-013280000000184.365       
990108Methyldodecane  321560-97-013280000000184.365       
990110Diethylmethylcyclohexanes  7 11220000000154.296       
990114Dimethylbutylcyclohexane  32 12240000000168.323       
990127Nonadecane  7629-92-519400000000268.527C(CCCCCCCCCCCCCCCCC)C, etc.1324305.33603.05251.3418E−045.897E−05
990129Ethyldimethyloctane  7 12260000000170.338       
998063n-Pentylcyclohexane  74292-92-611220000000154.296C(CCCC1)(C1)CCCCC1114215.66476.87256.8332E−033.933E−01
998067C5 Cyclohexane  74292-92-611220000000154.296C(CCCC1)(C1)CCCCC1114215.66476.87256.8332E−033.933E−01
998071C5 Substituted Cycl  74292-92-611220000000154.296C(CCCC1)(C1)CCCCC1114215.66476.87256.8332E−033.933E−01
998072C6 Substituted Cycl  74292-75-512240000000168.323C(CCCC1)(C1)CCCCCC1161263.60497.86252.6968E−031.255E−01
998086C2 Alkyl Decalin  32 0000000000.000       
9981552-Methyldecane  76975-98-011240000000156.312       
999110C10 Compounds (Diesel Exhaust)  32 10200000000140.269       
999111C11 Compounds (Diesel Exhaust)1.37E−111988324292-92-611220000000154.296C(CCCC1)(C1)CCCCC      
999112C12 Compounds (Diesel Exhaust)1.51E−11198832112-41-412240000000168.323C( = C)CCCCCCCCCC      
999113C13 Compounds (Diesel Exhaust)1.75E−111988325617-41-413260000000182.349C(CCCC1)(C1)CCCCCCC      
999114C14 Compounds (Diesel Exhaust)1.93E−111988321795-15-914280000000196.376C(CCCC1)(C1)CCCCCCCC      
999115C15 Compounds (Diesel Exhaust)2.23E−111988322882-02-515300000000210.403C(CCCC1)(C1)CCCCCCCCC      
999116C16 Compounds (Diesel Exhaust)2.50E−111988321795-16-016320000000224.430C(CCCC1)(C1)CCCCCCCCCC      
999117C17 Compounds (Diesel Exhaust)  3241977-41-717340000000238.457       
999118C18 Compounds (Diesel Exhaust)  321795-17-118360000000252.484C(CCCC1)(C1)CCCCCCCCCCCC      
999119C19 Compounds (Diesel Exhaust)  326006-33-319380000000266.511C(CCCC1)(C1)CCCCCCCCCCCCC      
9999182-Methyldecane  76975-98-011240000000156.312       
1043133Paraffins (C16–C34)  7 25520000000352.688       
1090125Heneicosane  32629-94-721440000000296.580C(CCCCCCCCCCCCCCCCCCCC)      
1090126Eicosane  32112-95-820420000000282.553C(CCCCCCCCCCCCCCCCCC)C1340309.59616.93251.2114E−042.155E−05
1099120C20 Compounds (Diesel Exhaust)  321795-18-220400000000280.538C(CCCC1)(C1)CCCCCCCCCCCCCC      
1099121C21 Compounds (Diesel Exhaust)  326006-95-721420000000294.564C(CCCC1)(C1)CCCCCCCCCCCCCCC      
1099122C22 Compounds (Diesel Exhaust)  326812-38-022440000000308.591       
1099123C23 Compounds (Diesel Exhaust)  3219781-73-823460000000322.618       
1099124C24 Compounds (Diesel Exhaust)  324445-06-124480000000336.645C(CCCC1)(C1)CCCCCCCCCCCCCCCCCC      
1099125C25 Compounds (Diesel Exhaust)  32 25500000000350.672       
1099126C26 Compounds (Diesel Exhaust)  326703-81-726520000000364.699       
1099127C27 Compounds (Diesel Exhaust)  3255282-34-327540000000378.726       
1099128C28 Compounds (Diesel Exhaust)  32 28560000000392.753       
1099129C29 Compounds (Diesel Exhaust)  32 29580000000406.780       
1099130C30 Compounds (Diesel Exhaust)  32 30600000000420.806       
1099131C31 Compounds (Diesel Exhaust)  32 31620000000434.833       
1099132C32 Compounds (Diesel Exhaust)  32 32640000000448.860       
1099133C33 Compounds (Diesel Exhaust)  32 33660000000462.887       
1099134C34 Compounds (Diesel Exhaust)  32 34680000000476.914       
1099135C35 Compounds (Diesel Exhaust)  32 35700000000490.941       
1099136C36 Compounds (Diesel Exhaust)  32 36720000000504.968       
1099137C37 Compounds (Diesel Exhaust)  32 37740000000518.995       
1099138C38 Compounds (Diesel Exhaust)  32 38760000000533.021       
1099139C39 Compounds (Diesel Exhaust)  32 39780000000547.048       
1099140C40 Compounds (Diesel Exhaust)  32 40800000000561.075       
1099141C41 Compounds (Diesel Exhaust)  32 41820000000575.102       
1099142C42 Compounds (Diesel Exhaust)  32 42840000000589.129       
1099143C43 Compounds (Diesel Exhaust)  32 43860000000603.156       
1143203Ethylene9.40E−121990974-85-124000000028.054C = C102104.01169.47258.4126E+015.198E+04
1199102C2 Compounds (Diesel Exhaust)  32 24000000028.054       
1243205Propene1.30E−11199210115-07-136000000042.081C( = C)C17487.90225.43258.5630E+018.643E+03
1299103C3 Compounds (Diesel Exhaust)1.30E−11199232115-07-136000000042.081C( = C)C      
1343215Isobutylene4.70E−11199211115-11-748000000056.108C( = C)(C)C289132.81266.25258.4460E+012.297E+03
13432233-Methyl-1-Butene3.50E−11199211563-45-1510000000070.134C(C(C)C) = C407107.93303.11253.8020E+016.069E+02
13432241-Pentene3.50E−11199211109-67-1510000000070.134C( = C)CCC407107.93303.11253.8020E+016.379E+02
13432252-Methyl-1-Butene5.20E−11199211563-46-2510000000070.134C( = C)(CC)C404135.58304.30254.9700E+016.069E+02
1390022Methylpropene4.70E−11199211115-11-748000000056.108C( = C)(C)C289132.81266.25258.4460E+012.297E+03
13.543120Isomers of Butene3.14E−11198613106-98-948000000056.108C( = C)CC, etc.28587.80266.90257.1291E+012.242E+03
13.543120Isomers of Butene5.30E−11199211624-64-648000000056.108C( = CC)C, etc.      
13.543121Isomers of Pentene3.50E−11199213109-67-1510000000070.134C( = C)CCC      
13.543121Isomers of Pentene5.70E−11199213646-04-8510000000070.134C( = CC)CC, etc.      
13.543143C5 Olefin3.50E−11199213109-67-1510000000070.134C( = C)CCC, etc.      
13.543143C5 Olefin5.70E−11198912646-04-8510000000070.134C( = CC)CC, etc.      
13.543213Butene3.14E−11198611106-98-948000000056.108C( = C)CC, etc.28587.80266.90257.1291E+012.242E+03
13.543213Butene5.30E−11199211624-64-648000000056.108C( = CC)C, etc.      
13.590023Methylbutene5.20E−11199213563-46-2510000000070.134C( = C)(CC)C, etc.      
13.590023Methylbutene8.30E−11199213513-35-9510000000070.134C( = CC)(C)C      
13.590035n-Pentene3.50E−11199213109-67-1510000000070.134C( = C)CCC407107.93303.11253.8020E+016.379E+02
13.590035n-Pentene5.70E−11199213109-67-1510000000070.134C( = C)CCC407107.93303.11253.8020E+016.379E+02
1443216tert-2-Butene5.30E−11199211624-64-648000000056.108C( = CC)C287167.62274.03257.5482E+011.747E+03
1443217cis-2-Butene5.60E−11198612590-18-148000000056.108C( = CC)C286134.26276.87257.3265E+011.593E+03
1443226trans-2-Pentene5.70E−11198912646-04-8510000000070.134C( = CC)CC, etc.409132.89309.49255.2152E+015.030E+02
1443227cis-2-Pentene5.70E−11199212627-20-3510000000070.134C( = CC)CC408121.75310.08255.2152E+014.923E+02
14432282-Methyl-2-Butene8.30E−11199212513-35-9510000000070.134C( = CC)(C)C405139.39311.71253.9312E+014.656E+02
1443292Cyclopentene4.99E−11198912142-29-058000000068.119C( = CCC1)C1374138.13317.38251.4155E+023.782E+02
1490118Octahydropentalene  32 0000000000.000       
15432113-Methyl-1-Pentene  11760-20-3612000000084.161 565138.31340.85251.0009E+012.677E+02
154323423-Dimethyl-1-Butene5.50E−11199211563-78-0612000000084.161 551115.89328.76251.7145E+012.508E+02
15432451-Hexene3.70E−11199211592-41-6612000000084.161C( = C)CCCC556133.39336.63251.4918E+011.849E+02
15432792-Ethyl-1-Butene5.60E−11199211760-21-4612000000084.161C( = C)(CC)CC554141.61337.82251.1517E+011.741E+02
15900074-Methyl-1-Pentene3.80E−11199211691-37-2612000000084.161C( = C)CC(C)C566119.51327.01251.0279E+012.700E+02
15900571-Heptene3.80E−11199211592-76-7714000000098.188C( = C)CCCCC712154.27366.79253.3319E+005.588E+01
15980022-Ethyl-1-Butene5.60E−11199211760-21-4612000000084.161C( = C)(CC)CC554141.61337.82251.1517E+011.741E+02
15980051-Heptene3.80E−11199211592-76-7714000000098.188C( = C)CCCCC712154.27366.79253.3319E+005.588E+01
15980402-Methyl-1-Pentene5.50E−11199211763-29-1612000000084.161C( = C)(CCC)C562137.42335.25251.6697E+011.942E+02
15981354-Methyl-1-Pentene3.80E−11199211691-37-2612000000084.161C( = C)CC(C)C566119.51327.01251.0279E+012.700E+02
15.543138C8 Olefins3.80E−11199213111-66-08160000000112.215C( = C)CCCCCC, etc.814171.45394.44256.5757E−011.727E+01
15.543138C8 Olefins6.76E−1119921314850-23-88160000000112.215 817179.37395.41253.9029E−011.771E+01
15.543264Heptene3.80E−1119921310574-37-5714000000098.188       
15.543264Heptene  12592-76-7714000000098.188C( = C)CCCCC, etc.712154.27366.79253.3319E+005.588E+01
15.543265Octene3.80E−11199211111-66-08160000000112.215C( = C)CCCCCC, etc.814171.45394.44256.5757E−011.727E+01
15.543265Octene  11111-67-18160000000112.215C( = C)CCCCCC, etc.815185.45398.15253.3227E−011.626E+01
15.543286Dimethylhexene  137116-86-18160000000112.215C( = C)CCC(C)(C)C, etc.      
15.543286Dimethylhexene  1315910-22-28160000000112.215       
15.543289C6 Olefins3.70E−11199213592-41-6612000000084.161C( = C)CCCC, etc.      
15.543289C6 Olefins8.75E−11198412625-27-4612000000084.161CCC = C(C)C, etc.      
15.543294C7 Olefins3.80E−1119921310574-37-5714000000098.188       
15.543294C7 Olefins1.01E−10198413592-76-7714000000098.188C( = C)CCCCC, etc.712154.27366.79253.3319E+005.588E+01
15.590025Methylpentenes3.80E−11199213691-37-2612000000084.161C( = C)CC(C)C, etc.      
15.590025Methylpentenes9.40E−11199213922-62-3612000000084.161C( = C)CC(C)C, etc.      
15.590029Methylhexenes  133404-61-3714000000098.188C(C(CCC)C) = C719145.00357.05253.8382E+008.186E+01
15.590029Methylhexenes  133404-65-7714000000098.188       
15.590056Hexene3.70E−11199213592-41-6612000000084.161C( = C)CCCC, etc.      
15.590056Hexene8.75E−11198412625-27-4612000000084.161CCC = C(C)C, etc.      
15.590061Dimethylbutene3.80E−11199213691-37-2612000000084.161 551115.89328.76251.7145E+012.508E+02
15.590061Dimethylbutene6.24E−11199213674-76-0612000000084.161 551115.89328.76251.7145E+012.508E+02
15.590063Dimethylpentene6.50E−11199232690-08-4714000000098.188       
15.590063Dimethylpentene5.7E−111992326904-02-6714000000098.188       
15.590078Ethylpentene9.60E−111992134038-04-4714000000098.188       
15.590078Ethylpentene9.60E−11199212816-79-5714000000098.188C( = CC)(CC)CC, etc.      
15.598090Methylheptene  1115870-10-78160000000112.215       
15.598090Methylheptene  11627-97-48160000000112.215       
15.598137Dimethylhexene  137116-86-18160000000112.215C( = C)CCC(C)(C)C, etc.      
15.598137Dimethylhexene  1315910-22-28160000000112.215       
15.599106C6 Compounds (Diesel Exhaust)  32 67000000079.122       
15.599107C7 Compounds (Diesel Exhaust)  32 79000000093.148       
15.599108C8 Compounds (Diesel Exhaust)  32111-66-08160000000112.215C( = C)CCCCCC, etc.814171.45394.44256.5757E−011.727E+01
1643154C7H12  2 712000000096.172       
1643154C7H12    712000000096.172       
1643266cis-2-Octene  127642-04-88160000000112.215       
16432703-Methyl-t-2-Pentene9.40E−11199212922-62-3612000000084.161C( = CC)(CC)C555134.70343.60258.7859E+001.390E+02
1643272Methylcyclopentene  12693-89-0610000000082.145 525145.96348.9500.0000E+001.167E+02
1643273Cyclohexene6.18E−11199012110-83-8610000000082.145C( = CCCC1)C1528169.67356.12254.6742E+018.810E+01
1643283C3-Hexene6.30E−111992127642-09-3612000000084.161 559135.33339.60251.0610E+011.638E+02
16432842-Methyl-2-Pentene8.75E−11198412625-27-4612000000084.161CCC = C(C)C563138.07340.45251.0198E+011.567E+02
16432852-Hexene6.24E−111984124050-45-7612000000084.161 558140.17341.02259.9296E+001.544E+02
16432934-Methyl-t-2-Pentene6.10E−11199212691-38-3612000000084.161CC = CC(C)C568132.35331.75251.5092E+012.214E+02
16432991-Methylcyclohexene9.62E−11197612591-49-1712000000096.172C( = CCCC1)(C1)C      
16700213-Ethyl-2-Pentene9.60E−11199212816-79-5714000000098.188C( = CC)(CC)CC      
1690013C2-Octene1.36E−101992127642-04-88160000000112.215       
1690042t-3-Hexene  1213269-52-8612000000084.161CCC = CCC560159.73340.24251.0299E+011.584E+02
1690046Methylcyclohexene  32591-48-0712000000096.172C( = CC(CC1)C)C1      
1690065Dimethylcyclopentenes  12 712000000096.172       
1690079Ethylcyclopentene  12 712000000096.172       
1690091Tetramethylcyclobutene  12 8140000000110.199       
1698003cis-3-Hexene6.30E−111992127642-09-3612000000084.161 559135.33339.60251.0610E+011.638E+02
16980042-Methyl-2-Pentene8.75E−11198412625-27-4612000000084.161CCC = C(C)C563138.07340.45251.0198E+011.567E+02
1698034t-2-Hexene6.20E−111992127688-21-3612000000084.161 558140.17341.02259.9296E+001.544E+02
1698035c-2-Hexene  127688-21-3612000000084.161 557132.00342.03259.4679E+001.487E+02
16980371-Methylcyclohexene9.62E−11197612591-49-1712000000096.172C( = CCCC1)(C1)C      
16980413-Heptene  12592-78-9714000000098.188 716136.52368.82252.0409E+005.198E+01
1698054244-Trimethyl-1-Pentene6.50E−11199211107-39-18160000000112.215C( = C)(CC(C)(C)C)C      
1698136trans-3-Hexene9.40E−1119921213269-52-8612000000084.161CCC = CCC560159.73340.24251.0299E+011.584E+02
17432671-Nonene  11124-11-89180000000126.242C( = C)CCCCCCC908191.78420.02251.5940E−015.337E+00
17432691-Nonene  11124-11-89180000000126.242C( = C)CCCCCCC      
1743568Nonenone  135009-32-59161000000140.225       
17900141-Decene3.50E−11199211872-05-910200000000140.269C( = C)CCCCCCC      
17900321-Undecene  11821-95-411220000000154.296C( = C)CCCCCCCCC1112223.99465.82255.4580E−034.874E−01
17.543124C9 Olefins  1327215-95-89180000000126.242       
17.543124C9 Olefins  13124-11-89180000000126.242C( = C)CCCCCCC, etc.      
17.543125C10 Olefins3.50E−11199213872-05-910200000000140.269C( = C)CCCCCCCC, etc.      
17.543146C11 Olefins  13821-95-411220000000154.296C( = C)CCCCCCCCC, etc.1112223.99465.82255.4580E−034.874E−01
17.543146C11 Olefins1.59E−1019921328761-27-511220000000154.296       
17.543147C12 Olefins  13112-41-412240000000168.323C( = C)CCCCCCCCCC, etc.      
17.543147C12 Olefins  136842-15-512240000000168.323       
17.590001Dodecene  13112-41-412240000000168.323C( = C)CCCCCCCCCC, etc.1159237.93486.50251.9742E−031.569E−01
17.590001Dodecene  136842-15-512240000000168.323       
17.590075Ethyloctene  13 10200000000140.269       
17.590075Ethyloctene  13 10200000000140.269       
17.590095Trimethylhexene  1313427-43-59180000000126.242C = CC(C)(C)CC(C)C      
17.590095Trimethylhexene  1395461-54-49180000000126.242       
17.590100Nonene  1327215-95-89180000000126.242       
17.590100Nonene  13124-11-89180000000126.242C( = C)CCCCCCC, etc.      
17.590106Methylnonene  13 10200000000140.269       
17.590106Methylnonene  13 10200000000140.269       
17.590107Methyldecene  13 11220000000154.296       
17.590107Methyldecene  13 11220000000154.296       
17.590109Propylheptenes  13 10200000000140.269       
17.590109Propylheptenes  13 10200000000140.269       
17.590123Trimethylnonene  1354410-98-912240000000168.323       
17.590123Trimethylnonene  1354410-98-912240000000168.323       
17.590124Dimethyloctenes1.45E−101992134984-01-410200000000140.269       
17.590124Dimethyloctenes1.45E−101992134984-01-410200000000140.269       
17.598038C9 Olefins  1327215-95-89180000000126.242       
17.598038C9 Olefins  13124-11-89180000000126.242C( = C)CCCCCCC, etc.      
17.598039C10 Olefins3.50E−11199213872-05-910200000000140.269C( = C)CCCCCCCC, etc.      
17.598082Ethylheptene1.53E−1019921133933-74-39180000000126.242       
17.598082Ethylheptene1.53E−1019921133933-74-39180000000126.242     - 
17.598083Trimethyldecene  12 13260000000182.349 1188250.08505.93259.0793E−046.279E−02
17.598083Trimethyldecene  12 13260000000182.349 1188250.08505.93259.0793E−046.279E−02
17.599109C9 Compounds (Diesel Exhaust)  32124-11-89180000000126.242C( = C)CCCCCCC, etc.      
1843150Isomers of C10H18 (p-Menth-3-ene?)  6500-00-510180000000138.253       
1843150Isomers of C10H18 (p-Menth-3-ene?)  6500-00-510180000000138.253       
1890034trans-2-Nonene  1227215-95-89180000000126.242       
1890105Propenylcyclohexane  32 9160000000124.226       
18980424-Nonene  1227215-95-89180000000126.242       
1898089Isopulegone (p-Menth-8-ene-3-one)  3229606-79-910161000000152.236       
1943208Propadiene2.10E−11199230463-49-034000000040.065C( = C) = C151136.87238.6500.0000E+005.410E+03
194321813-Butadiene5.80E−11199212106-99-046000000054.092C(C = C) = C256164.25268.74252.4491E+022.097E+03
1990011Methylallene2.69E−11199232590-19-246000000054.092C( = CC) = C255136.95284.00252.1737E+021.251E+03
2043243Isoprene1.01E−1019863378-79-558000000068.119C(C = C)( = C)C377127.20307.22251.6987E+024.238E+02
2090024Methylbutadiene1.01E−1019863378-79-558000000068.119C(C = C)( = C)C377127.20307.22251.6987E+024.238E+02
20981342-Methyl-13-Butadiene1.01E−1019863378-79-558000000068.119C(C = C)( = C)C377127.20307.22251.6987E+024.238E+02
2143149C8H141.87E−10199232764-13-68140000000110.199C( = CC = C(C)C)(C)C      
2143153C10H161.31E−10199232 10160000000136.237       
2145111C10H12    10120000000132.205       
2145750Piperylene  32504-60-958000000068.119C( = CC = C)C379132.35317.22251.0005E+023.773E+02
2190027Methylcyclopentadiene  1226519-91-568000000080.130 514-345.9300.0000E+001.230E+02
2190039Methylhexadiene9.55E−111983124049-81-4712000000096.172       
2190041Methylcyclohexadiene  12 710000000094.156       
2190058Hexadienal  32142-83-668100000096.129O = CC = CC = CC      
2190059Heptadienal  324313-03-57101000000110.156O = CC = CC = CCC      
2190066Nonadiene  1256700-77-79160000000124.226       
2190068Dimethylhexadiene1.20E−10198312627-58-78140000000110.199C(CCC( = C)C)( = C)C      
2190093Trimethylpentadiene  12764-13-68140000000110.199C( = CC = C(C)C)(C)C      
2190099Octatriene  1222038-69-38120000000108.183       
2190103Pentadiene8.30E−11199212504-60-958000000068.119C( = CC = C)C379132.35317.22251.0005E+023.773E+02
2245201Benzene1.19E−1219951471-43-266000000078.114c(cccc1)c1493278.68353.24254.0529E+029.432E+01
2345202Toluene5.50E−12199815108-88-378000000092.141c(cccc1)(c1)C680178.18383.78251.0609E+022.824E+01
2445105Isomers of Butylbenzene4.84E−1219851698-06-610140000000134.221c(cccc1)(c1)C(C)(C)C, etc.      
2445108Isomers of Propylbenzene5.70E−12198615103-65-19120000000120.194c(cccc1)(c1)CCC894173.67432.39251.3977E+013.391E+00
2445109C3/C4/C5 Aucylbenzenes  32 10140000000134.221       
2445110C1O Aromatic  16141-93-510140000000134.221c(cccc1CC)(c1)CC, etc.981189.26454.29253.6460E+001.120E+00
2445112Isomers of C10H10 (Divinylbenzene?)  321321-74-010100000000130.189 965206.25472.6500.0000E+005.729E−01
2445203Ethylbenzene7.50E−12198615100-41-48100000000106.167c(cccc1)(c1)CC778178.20409.35252.8019E+019.550E+00
2445209n-Propylbenzene5.70E−12198615103-65-19120000000120.194c(cccc1)(c1)CCC894173.67432.39251.3977E+013.391E+00
2445210Cumene (Isopropyl Benzene)6.61E−1219851398-82-89120000000120.194c(cccc1)(c1)C(C)C889177.14425.56257.4945E+004.505E+00
2445215tert-Butylbenzene4.84E−1219851598-06-610140000000134.221c(cccc1)(c1)C(C)(C)C      
2445216sec-Butylbenzene  15135-98-810140000000134.221c(cccc1)(c1)C(CC)C975197.72446.48255.6564E+001.734E+00
2445231Pentyl Benzene  15538-68-111160000000148.248c(cccc1)(c1)CCCCC1108198.15478.61254.6664E−014.336E−01
2445235Butyl Benzene  15104-51-810140000000134.221c(cccc1)(c1)CCCC974185.30456.46251.8549E+001.013E+00
2445245C5-Alkylbenzenes  15538-68-111160000000148.248c(cccc1)(c1)CCCCC1108198.15478.61254.6664E−014.336E−01
2445246C5-Alkylbenzenes (Unsat.)  154165-86-011140000000146.232       
2445247C6-Alkylbenzene  151077-16-312180000000162.275c(cccc1)(c1)CCCCCC1150212.00499.26251.1301E−011.190E−01
2445249C7-Alkylbenzene  151078-71-313200000000176.302c(cccc1)(c1)CCCCCCC1186225.15519.25251.1015E−013.058E−02
2446752Dimethylindene  3218636-55-011120000000144.216       
2498043Cumene (Isopropyl Benzene6.61E−1219851398-82-89120000000120.194c(cccc1)(c1)C(C)C889177.14425.56257.4945E+004.505E+00
2498044Indane1.90E−11199716496-11-79100000000118.178c(c(ccc1)CC2)(c1)C2878221.74451.12251.6656E+011.525E+00
2498047Isobutylbenzene  15538-93-210140000000134.221c(cccc1)(c1)CC(C)C990221.70445.94255.8313E+001.906E+00
2498049C9 Aromatics  161081-77-215240000000204.356c(cccc1)(c1)CCCCCCCCC1237249.00555.20253.2314E−023.981E−03
2498050C10 Aromatics  16 0000000000.000       
2499915Isobutylbenzene  15538-93-210140000000134.221c(cccc1)(c1)CC(C)C990221.70445.94255.8313E+001.906E+00
2545220Styrene1.06E−10199218100-42-5880000000104.152c(cccc1)(c1)C = C768242.54418.31255.5641E+016.057E+00
2545221Methyl styrene  18100-80-19100000000118.178c(cccc1C = C)(c1)C882186.81444.75251.3568E+011.884E+00
2545228Ethyl styrene  187525-62-410120000000132.205c(cccc1C = C)(c1)CC      
2545229Divinyl Benzene  321321-74-010100000000130.189 965206.25472.6500.0000E+005.729E−01
25452414-Phenyl-1-Butene  11768-56-910120000000132.205       
2545242trans-1-Phenylbutene  121560-06-110120000000132.205       
2545248C4-Alkylstyrenes  18 12160000000160.259       
2545250C3 Alkylstyrene  18 11140000000146.232       
2546711C2 Alkylindan  32 11140000000146.232       
2546712Indene7.80E−1119973295-13-6980000000116.163c(c(C = C1)ccc2)(c2)C1876271.70455.7700.0000E+001.075E+00
2546747Methylindans  16767-58-810120000000132.205       
2546750Dimethylindans  161685-82-111140000000146.232       
2546754Ethylindan  164830-99-311140000000146.232       
2546755Trimethylindan  1654340-87-312160000000160.259       
2590119Methylindene  32767-59-910100000000130.189CC1C = Cc2ccccc12966-471.6500.0000E+005.806E−01
2598017dm-23dh-1H-Indene  3227133-93-310120000000132.205       
2598048Indene7.80E−1119973295-13-6980000000116.163c(c(C = C1)ccc2)(c2)C1876271.70455.7700.0000E+001.075E+00
2598084C2 Alkylindan  324830-99-311140000000146.232       
2645102Isomers of Xylene1.22E−1119891695-47-68100000000106.167c(c(ccc1)C)(c1)C, etc.780247.98417.58253.7473E+016.573E+00
2645104Isomers of Ethyltoluene1.32E−11198516611-14-39120000000120.194c(c(ccc1)C)(c1)CC, etc.891192.35438.33251.3948E+012.584E+00
2645106Isomers of Diethylbenzene  16105-05-510140000000134.221c(ccc(c1)CC)(c1)CC983230.32456.94253.1438E+001.044E+00
2645204o-Xylene1.22E−1119891695-47-68100000000106.167c(c(ccc1)C)(c1)C780247.98417.58253.7473E+016.573E+00
2645205m-Xylene2.04E−11199816108-38-38100000000106.167c(cccc1C)(c1)C779225.30412.27252.9530E+018.378E+00
2645206p-Xylene1.30E−11198916106-42-38100000000106.167c(ccc(c1)C(c1)C      
2645211o-Ethyltoluene1.32E−11198516611-14-39120000000120.194c(c(ccc1)C)(c1)CC891192.35438.33251.3948E+012.584E+00
2645212m-Ethyltoluene2.24E−11198516620-14-49120000000120.194CCc1cccc(C)c1890177.61434.48251.2427E+013.007E+00
264521712-Diethylbenzene  16135-01-310140000000134.221 982241.93456.61253.2023E+001.041E+00
2645218m-Diethylbenzene  16141-93-510140000000134.221c(cccc1CC)(c1)CC981189.26454.29253.6460E+001.120E+00
2645236Diisopropyl benzene  1699-62-712180000000162.275c(cccc1C(C)C)(c1)C(C)C1148210.02476.33259.0174E−013.889E−01
2645238Ethyltoluene1.32E−11198516611-14-39120000000120.194c(c(ccc1)C)(c1)CC, etc.891192.35438.33251.3948E+012.584E+00
26700221-t-Butyl-2-Mthlben  322719-52-011160000000148.248       
2690010m-Xylene and p-Xylene  161330-20-78100000000106.167       
2698045m-Diethylbenzene  16141-93-510140000000134.221c(cccc1CC)(c1)CC981189.26454.29253.6460E+001.120E+00
269815412-Diethylbenzene  16135-01-310140000000134.221 982241.93456.61253.2023E+001.041E+00
26999121-Methyl-3-Ethylbenzene2.24E−11198516620-14-49120000000120.194CCc1cccc(C)c1890177.61434.48251.2427E+013.007E+00
26999131-Methyl-2-Ethylbenzene1.32E−11198516611-14-39120000000120.194c(c(ccc1)C)(c1)CC, etc.891192.35438.33251.3948E+012.584E+00
26999161-Methyl-3-m-Propyl-Benzene  161074-43-710140000000134.221c(cccc1C)(c1)CCC      
26999171-Methyl-3-Isopropylbenzene1.51E−1119901699-87-610140000000134.221c(ccc(c1)C)(c1)C(C)C      
2745107Trimethylbenzene3.25E−1119891695-63-69120000000120.194c(ccc(c1C)C)(c1)C, etc.896229.38442.53257.8931E+002.242E+00
2745207135-Trimethylbenzene5.82E−11199816108-67-89120000000120.194c(cc(cc1C)C)(c1)C      
2745208124-Trimethylbenzene3.25E−1119891695-63-69120000000120.194c(ccc(c1C)C)(c1)C896229.38442.53257.8931E+002.242E+00
2745225123-Trimethylbenzene3.27E−11198916526-73-89120000000120.194c(c(c(cc1)C)C)(c1)C895247.79449.27255.3976E+001.671E+00
27452371234-Tetramethylbenzene  16488-23-310140000000134.221c(c(c(c(c1)C)C)C)(c1)C      
2745243Ethyldimethylbenzene  16874-41-910140000000134.221c(ccc(c1C)CC)(c1)C      
2745244Tetramethylbenzene  1695-93-210140000000134.221c(c(cc(c1C)C)C)(c1)C992352.38469.99254.6708E−015.463E−01
27700231-t-Butyl-35-Dimbe  3298-19-112180000000162.275c(cc(cc1C)C(C)(C)C)(c1)C      
2846701Naphthalene2.30E−1119981691-20-31080000000128.174c(c(ccc1)ccc2)(c2)c2962353.43491.14254.5048E+002.624E−01
2898046Naphthalene2.30E−1119981691-20-31080000000128.174c(c(ccc1)ccc2)(c2)c2962353.43491.14254.5048E+002.624E−01
2945452Dibutyl Phthalate  1684-74-216224000000278.348O = C(OCCCC)c(c(ccc1)C( = O)OCCCC)c11256238.15613.15206.9900E−011.068E−05
2945470Di-C8 Alkyl Phthalate  32 24384000000390.563 1356-694.0000.0000E+002.413E−08
3045450Dimethyl terephthalate  32120-61-610104000000194.187O = C(OC)c(ccc(c1)C( = O)OC)c1969413.80561.1500.0000E+001.111E−02
3045451Dimethyl phthalate  16131-11-310104000000194.187O = C(OC)c(c(ccc1)C( = O)OC)c1968272.15556.85203.9973E+023.026E−03
3045454Dipropyl phthalate  32131-16-814184000000250.295O = C(OCCC)c(c(ccc1)C( = O)OCCC)c1      
3045456Butylisopropylphthalate  16 15204000000264.321       
3045477Butylbenzylphthalate  3285-68-719204000000312.365O = C(Occ(cccc1)c1)c(c(ccc2)C( = O)OCCCC)c2      
3045601Phthalic Anhydride  3285-44-9843000000148.118O = C(OC( = O)c1cccc2)c12761404.26557.65257.3362E+022.419E−02
3098028Phthalic Anhydride  1685-44-9843000000148.118O = C(OC( = O)c1cccc2)c12761404.26557.65257.3362E+022.419E−02
3145113C11H10  32 11100000000142.200c(c(c(cc1)C)ccc2)(c2)c1      
3146203Methoxynaphthalene  1693-04-911101000000158.200O(c(ccc(c1ccc2)c2)c1)C      
3146702Methyl naphthalenes5.30E−1119871690-12-011100000000142.200c(c(c(cc1)C)ccc2)(c2)c11105242.67517.83253.5524E+006.689E−02
3146703Dimethyl naphthalene  16575-43-912120000000156.227Cc2ccc1c(C)cccc1c21136259.16536.1600.0000E+003.071E−02
3146704Phenylnaphthalenes  16605-02-716120000000204.271 1254318.15607.1500.0000E+002.838E−04
3146706Acenaphthene5.80E−1119983283-32-912100000000154.211c(c(ccc1)ccc2)(c1CC3)c231125366.56550.54254.5398E−011.393E−02
3146709Anthracene1.90E−10199816120-12-714100000000178.233c(c(ccc1)cc(c2ccc3)c3)(c1)c21202489.25615.18225.4045E−031.304E−03
3146713Pyrene5.00E−11199032129-00-016100000000202.255c(c(c(cc1)ccc2)c2cc3)(c1ccc4)c3c41253423.81667.95251.1529E−022.348E−05
3146727Methylanthracenes  16610-48-015120000000192.260       
3146729C2 Alkylanthracenes  16 16140000000206.287       
3146731Cyclopentaanthracenes  32 16120000000204.271       
3146732Cyclopentaphenanthrenes  32 16120000000204.271       
3146746C2 Alkylnapthalene  16939-27-512120000000156.227 1142265.76531.49259.2251E−012.512E−02
3198010Methylnaphthalenes5.30E−1119871690-12-011100000000142.200c(c(c(cc1)C)ccc2)(c2)c11105242.67517.83253.5524E+006.689E−02
3198011Ethylnaphtalene  16939-27-512120000000156.227 1142265.76531.49259.2251E−012.512E−02
3198012Dimethylnapthalene  16571-58-412120000000156.227Cc1ccc(C)c2ccccc121134280.82540.46251.3146E+004.122E−02
3198013Propylnaphthalene  16 13140000000170.254       
3198014Trimethylnaphthalene  16829-26-513140000000170.254Cc2ccc1cc(C)c(C)cc1c2      
3198015Anthracene1.90E−10199816120-12-714100000000178.233c(c(ccc1)cc(c2ccc3)c3)(c1)c21202489.25615.18225.4045E−031.304E−03
3198016Methylanthracenes  16610-48-015120000000192.260       
3246202Octahydroindenes  32 9160000000124.226       
3246705Acenaphthylene1.10E−11198832208-96-81280000000152.196c(c(ccc1)ccc2)(c1cc3)c23      
3246707Fluorene1.30E1119983286-73-713100000000166.222c(c(c(c1ccc2)c2)ccc3)(c3)C11178387.94570.44252.0537E−013.738E−03
3246708Phenanthrene2.70E−1119983285-01-814100000000178.233c(c(c(c(c1)ccc2)c2)ccc3)(c1)c31204372.38613.45251.1944E−015.401E−04
3246710Fluoranthene1.10E−11199832206-44-016100000000202.255c(c(ccc1)ccc2)(c1c(c3ccc4)c4)c231252383.33655.95272.1438E−021.107E−04
3246728Methylphenanthrenes  16832-69-915120000000192.260       
3246730C2 Alkylphenanthrene  16 16140000000206.287       
3246733Methylfluoranthenes  321706-01-017120000000216.282       
3345226Biphenyl7.70E−1219963292-52-412100000000154.211c(c(cccc1)c1)(cccc2)c21126342.37528.15258.1775E−012.024E−02
3345227Methyl Biphenyl  32643-58-313120000000168.238Cc1ccccc1c2ccccc2      
3345230Di(ethylphenyl) Ethane  32 18220000000238.373       
3345232Diphenyl Ethane  32103-29-714140000000182.265c(cccc1)(c1)CCc(cccc2)c21209324.34553.6500.0000E+006.851E−03
3345233Ethyl-Phenyl-Phenyl-Ethane  3264800-83-516180000000210.319       
3446102Anthraquinone  3284-65-11482000000208.216O = C(c(c(C( = O)c1cccc2)ccc3)c3)c121201559.15653.05251.1706E−014.114E−07
3446103Aminoanthraquinone  32117-79-31492100000223.231O = C(c(c(C( = O)c1cccc2)ccc3N)      
3446204Dihydroxynapthalenedione  32 1082000000160.172       
3446714Benzo(ghi) Fluoranthene  32203-12-318100000000226.277       
3446715Chrysene  32218-01-918120000000228.293c(c(c(c(c(c(c1)ccc2)c2)c3)c1)ccc4)(c3)c41286531.15714.15241.3511E−037.726E−07
3446716Benzo (a) Anthracene  1656-55-318120000000228.293c(c(c(c(c1)ccc2)c2)cc(c3ccc4)c4)(c1)c3      
3446717Benzo (b) Fluoranthene  32205-99-220120000000252.315       
3446718Benzo(k)fluoranthene  32207-08-920120000000252.315c2ccc1cc3c(cc1c2)c4cccc5cccc3c45      
3446719Benzo (a) Pyrene  1650-32-820120000000252.315c(c(c(cc1)ccc2)c2cc3)(c3cc(c4ccc5)c5)c14      
3446720Indeno(123-cd)pyrene  32193-39-522120000000276.337c(c(c(c(ccc1)c2)c1cc3)c3cc4)(c2c(c5ccc6)c6)c45      
3446721Benzo(ghi)perylene  32191-24-222120000000276.337c1cc2ccc3ccc4ccc5cccc6c(c1)c2c3c4c56      
3446722Dibenzo(ah)anthracene  3253-70-322140000000278.353c(c(c(c(c1)ccc2)c2)cc(c3c(c(c4)ccc5)c5)c4)(c1)c3      
3446723Perylene  32198-55-020120000000252.315c(c(ccc1)ccc2)(c1c(c(c(cc3)ccc4)c45)c3)c25      
3446724Benzo(e)pyrene  16192-97-220120000000252.315c1ccc2c(c1)c4cccc5ccc3cccc2c3c45      
3446725Anthanthrene  32191-26-422120000000276.337c1cc2ccc3cc5cccc6ccc4cc(c1)c2c3c4c56      
3446726Coronene  32191-07-124120000000300.359       
3446734Cyclopenta(cd)pyrene  3283381-96-818120000000228.293       
3446735Benzo(c)phenanthrene  32195-19-718120000000228.293       
3446736Methylbenzanthracenes  322381-15-919140000000242.320Cc4ccc3cc2ccc1ccccc1c2cc3c4      
3446737Methylbenzphenanthrene  32 19140000000242.320       
3446738Methylchrysenes  323351-28-819140000000242.320Cc1cccc3c1ccc4c2ccccc2ccc34      
3446739C2 Alkylbenzanthracene  32 20160000000256.347       
3446740C2 Alkylbenzophenanthrene  32 20160000000256.347       
3446741C2 Alkylchrysenes  32 20160000000256.347       
3446742Benzopyrenes  1650-32-820120000000252.315c(c(c(cc1)ccc2)c2cc3)(c3cc(c4ccc5)c5)c14      
3446743Dibenzanthracenes  32224-41-922140000000278.353c1ccc4c(c1)ccc5cc3ccc2ccccc2c3cc45      
3446744Dibenzphenanthrenes  32196-78-122140000000278.353       
3446745Dibenzopyrenes  32191-30-024140000000302.375c1ccc3c(c1)cc4ccc5cccc6c2ccccc2c3c4c56      
3446749Methyldihydronaphthalene  32 11120000000144.216       
3446751Dihydronapthalene  32447-53-010100000000130.189C2Cc1ccccc1C = C2      
3545300Phenol2.60E−11199517108-95-266100000094.113Oc(cccc1)c1503314.06454.99251.6414E+045.205E−01
3570019Benzyl Alcohol  17100-51-6781000000108.140Occ(cccc1)c1683257.85477.85257.4117E+037.979E−02
3645301Nonylphenol  17104-40-515241000000220.355Oc(ccc(c1)CCCCCCCCC)c11239-581.00255.7228E−019.223E−05
3645302Ethyldimethylphenol  1798-54-410141000000150.221Oc(ccc(c1)C(C)(C)C)c1      
3645303C4-Alkylphenols  17 10141000000150.221 993371.56512.88256.9591E+012.157E−02
3645304C5-Alkylphenols  1780-46-611161000000164.247Oc(c(ccc1)CCCCC)c11109366.00535.15251.8429E+018.372E−03
3645310C8 Phenols  17140-66-914221000000206.328 1217358.55563.6000.0000E+001.025E−03
3645311C9 Phenols  17644-35-99121000000136.194Oc(c(ccc1)CCC)c1      
3645330Biphenylol  1790-43-712101000000170.211Oc(c(c(cccc1)c1)ccc2)c2      
3645605Cresol4.90E−1119951795-48-7781000000108.140Oc(c(ccc1)C)c1, etc.      
3698021o-Cresol (2-m-Benze4.90E−1119951795-48-7781000000108.140Oc(c(ccc1)C)c1685304.19464.15204.1665E+032.969E−01
3743502Formaldehyde9.19E−1219971950-00-012100000030.026O = C27181.15254.05251.0000E+063.872E+03
3843503Acetaldehyde1.62E−1119932075-07-024100000044.053O = CC111150.15293.55251.0000E+068.942E+02
3943551Acetone1.90E−1319982167-64-136100000058.080O = C(C)C181178.45329.44251.0000E+062.282E+02
4043504Propionaldehyde2.00E−11199720123-38-636100000058.080O = CCC184193.15321.15251.7402E+053.147E+02
4143510Butyraldehyde2.27E−11198520123-72-848100000072.107O = CCCC294176.75347.95252.2318E+041.106E+02
4143511Isobutyraldehyde2.58E−1119972078-84-248100000072.107O = CC(C)C295208.15337.25252.3826E+041.722E+02
4143520Total C2–C5 Aldehydes  20 49100000073.115       
4198036Isobutyraldehyde2.58E−1119972078-84-248100000072.107O = CC(C)C295208.15337.25252.3826E+041.722E+02
4198056Isovaleraldehyde4.00E−11199720590-86-3510100000086.134O = CCCC(C)C415182.00376.15252.4699E+033.408E+01
4243512Hexanal  2066-25-16121000000100.161O = CCCCCC572217.15401.45301.0199E+031.115E+01
4290043Methylhexanal  201860-39-57141000000114.188       
4298159Hexanaldehyde  2066-25-16121000000100.161O = CCCCCC572217.15401.45301.0199E+031.115E+01
4345501Benzaldehyde1.20E−11199520100-52-7761000000106.124O = Cc(cccc1)c1665247.15451.90251.1214E+031.169E+00
4345502p-Tolualdehyde  20104-87-0881000000120.151O = Cc(ccc(c1)C)c1771-477.15253.4116E+022.505E−01
4345550Methylacetophenone  22122-00-99101000000134.178O = C(c(ccc(c1)C)c1)C      
4398157Benzaldehyde1.20E−11199520100-52-7761000000106.124O = Cc(cccc1)c1665247.15451.90251.1214E+031.169E+00
4443513Glyoxal1.15E−11198320107-22-222200000058.037O = CC = O      
4543514Methyl Glyoxal1.73E−1119832078-98-834200000072.064O = CC( = O)C      
46433912-Butyltetrahydrofuran  32 8161000000128.214       
4643392Ethylfuran1.08E−101992303208-16-068100000096.129O = (C( = CC = 1)CC)C1      
4670014Tetrahydrofuran1.78E−11198830109-99-948100000072.107O(CCC1)C1299164.65338.00201.0000E+061.611E+02
46981082-Butyltetrahydrofu  32 0000000000.000       
4743320Diacetone Alcohol4.00E−12199532123-42-26122000000116.160O = C(CC(O)(C)C)C586229.15441.0000.0000E+001.691E+00
4743552Methyl Ethyl Ketone9.72E−1319982278-93-348100000072.107O = C(CC)C297186.48352.79257.6234E+049.486E+01
4843559Methylbutyl Ketone1.21E−1219872275-97-86121000000100.161O = C(C(C)(C)C)C576189.15389.65253.4714E+031.969E+01
4843560Methyl Isobutyl Ketone1.25E−11199822108-10-16121000000100.161O = C(CC(C)C)C576189.15389.65253.4714E+031.969E+01
4843395C7H120  32502-42-17121000000112.172O = C(CCCCC1)C1      
4843467C4 Substituted Cyclohexanone  798-53-310181000000154.252O = C(CCC(C(C)(C)C)C1)C1      
4843561Cyclohexanone6.39E−12198822108-94-1610100000098.145O = C(CCCC1)C1536242.00428.90251.8514E+044.287E+00
4843562Methyl Amyl Ketone8.67E−12198722110-43-07141000000114.188O = C(CCCCC)C723238.15424.05256.8086E+023.758E+00
48435632-Methyl-3-Hexanone  227379-12-67141000000114.188       
4843565Dimethylcyclobutanone  22 610100000098.145       
4843566Trimethylcyclopentanone  32 8141000000126.199       
4843567Tetramethylpentanone  22815-24-79181000000142.241O = C(C(C)(C)C)C(C)(C)C      
4845610C11H14O  32939-97-911141000000162.232O = Cc(ccc(c1)C(C)(C)C)c1      
48980762-Methyl-3-Hexanone  227379-12-67141000000114.188CCCC( = O)C(C)C      
4898077Heptanone8.67E−12198722110-43-07141000000114.188O = C(CCCC)CC723238.15424.05256.8086E+023.758E+00
4898109Propylcyclohexanone  2294-65-59161000000140.225O = C(C(CCC1)CCC)C1      
4943403Formic Acid4.50E−1319972364-18-612200000046.026O = CO28281.55373.71251.0000E+064.225E+01
5043404Acetic Acid8.00E−1319972364-19-724200000060.053O = C(O)C114289.81391.05251.0000E+061.559E+01
5143405Propionic Acid1.20E−1219972379-09-436200000074.079O = C(O)CC189252.45414.32251.0000E+063.667E+00
5143407Acrylic Acid  2379-10-734200000072.064O = C(O)C = C155286.65414.15251.0000E+063.930E+00
5243408Palmitic Acid  2357-10-316322000000256.429O = C(O)CCCCCCCCCCCCCCC      
5243410Hexadecanoic Acid  2357-10-316322000000256.429O = C(O)CCCCCCCCCCCCCCC1263335.95624.15205.0583E−015.539E−05
5245401Xylene Base Acids  2399-94-5882000000136.150O = C(O)c(cccc1C)c1774452.75548.15255.2945E+011.911E−03
5245402Benzoic Acid  2365-85-0762000000122.123O = C(O)c(cccc1)c1666395.52522.40255.0153E+027.288E−03
5245404Dimethylethylbenzoic Acid  231320-16-711142000000178.231       
5270009Napththenic Acids  231338-24-50000000000.000       
5343409Adipic Acid  23124-04-96104000000146.143O = C(O)CCCCC( = O)O543425.50611.00343.7824E+035.624E−06
5345403Terephthalic Acid  23100-21-0864000000166.133O = C(c(ccc(c1)C( = O)O)c1765700.15832.00201.6266E+006.993E−16
5370010Oxalic Acid  23144-62-722400000090.035O = C(O)C( = O)O88462.65569.00201.7788E+043.348E−05
5443206Acetylene7.78E−1319892474-86-222000000026.038CC72192.40189.00256.9209E+023.655E+04
5543148Isomers of C9H16  32496-10-69160000000124.226       
5543151Isomers of C11H20  3255402-13-611200000000152.280       
5543209Methylacetylene (Propyne)5.70E−1219862974-99-734000000040.065C(#C)C150170.45249.94251.6400E+034.285E+03
55432811-Butyne7.23E−12198730107-00-646000000054.092C(#C)CC258147.43281.22259.5767E+021.407E+03
55432822-Butyne2.25E−11198730503-17-346000000054.092C(#CC)C257240.91300.13257.8791E+027.019E+02
5590036Pentyne1.09E−11198730627-19-058000000068.119C(#C)CCC, etc.383167.45313.33254.1596E+024.334E+02
5590037Hexyne1.28E−11198730693-02-7610000000082.145C(#C)CCCC, etc.533141.25344.48257.8973E+011.320E+02
5590044Methylheptyne  32 8140000000110.199       
5590054Pentenyne  32 56000000066.103 364-315.6500.0000E+002.245E+02
5590112Dimethyloctyne  32 10180000000138.253       
55981311-Butyne7.23E−12198730107-00-646000000054.092C(#C)CC258147.43281.22259.5767E+021.407E+03
55981332-Butyne2.25E−11198730503-17-346000000054.092C(#CC)C257240.91300.13257.8791E+027.019E+02
5643301Methyl Alcohol9.26E−1319972767-56-114100000032.042OC40175.47337.85251.0000E+061.251E+02
5743302Ethyl Alcohol3.24E−1219972864-17-526100000046.069OCC130159.05351.44251.0000E+065.872E+01
5843303n-Propyl Alcohol5.50E−1219972971-23-838100000060.096OCCC214146.95370.35251.0000E+062.050E+01
5843304iso-Propyl Alcohol5.11E−1219972967-63-038100000060.096OC(C)C212185.28355.41251.0000E+064.515E+01
5943305n-Butyl Alcohol1.08E−1119872971-36-3410100000074.123OCCCC324183.85390.81251.9216E+046.978E+00
5943306Isobutyl Alcohol  3078-83-1410100000074.123OCC(C)C330165.15380.81252.0972E+041.033E+01
5943309tert-Butyl Alcohol1.08E−1219962775-65-0410100000074.123OC(C)(C)C326298.97355.57251.0000E+064.150E+01
5943314sec-Butyl Alcohol9.21E−1219963078-92-2410100000074.123OC(CC)C325158.45372.70255.1792E+041.814E+01
5943317Cyclohexanol  30108-93-06121000000100.161OC(CCCC1)C1571296.60434.00257.0852E+037.462E−01
59433182-Ethyl Hexanol  30104-76-78181000000130.230OCC(CCCC)CC850203.15457.75251.3834E+011.341E−01
5943319Pentanol1.08E−1119873071-41-0512100000088.150OCCCCC447195.56410.95254.5762E+032.443E+00
5943330Isoamyl Alcohol1.31E−11199432123-51-3512100000088.150OCCC(C)C445155.95404.35255.6391E+033.147E+00
5943331Dimethylpentanol  30595-41-57161000000116.203       
5943332Dimethyloctanol  32106-21-810221000000158.284OCCC(CCCC(C)C)C      
5943333Dimethylheptanol  32108-82-79201000000144.257OC(CC(C)C)CC(C)C949208.00451.00251.2499E+022.990E−01
5943334Methylheptanol  32598-01-68181000000130.230       
5943336Octanol1.44E−11199032111-87-58181000000130.230OCCCCCCCC851257.65468.35257.4734E+017.762E−02
5943397Trimethylcyclohexanol  32116-02-99181000000142.241OC(CC(CC1(C)C)C)C1      
5945320Dimethylbenzylalcohol  32536-50-59121000000136.194OC(c(ccc(c1)C)c1)C      
5970001Decanol  32112-30-110221000000158.284OCCCCCCCCCC1093280.05503.35254.2135E+008.363E−03
5970017Amyl Alcohols1.08E−1119873071-41-0512100000088.150OCCCCC447195.56410.95254.5762E+032.443E+00
59981122-Ethylhexanol  32104-76-78181000000130.230OCC(CCCC)CC850203.15457.75251.3834E+011.341E−01
59981131-Heptanol1.36E−11198830111-70-67161000000116.203OCCCCCCC751239.15449.45252.7015E+022.130E−01
5999933Denaturant1.08E−1119873271-36-3410100000074.123OCCCC324183.85390.81251.9216E+046.978E+00
6043350Dimethylether2.89E−12199728115-10-626100000046.069O(C)C129131.66248.31182.6542E+044.412E+03
6098018Dimethylether2.89E−12199728115-10-626100000046.069O(C)C129131.66248.31182.6542E+044.412E+03
6143351Ethyl Ether1.31E−1119953060-29-7410100000074.123O(CC)CC327156.85307.58251.5511E+045.326E+02
6143376Methyl t-Butyl Ether1.52E−11199330628-28-4512100000088.150 451164.55328.35251.0921E+042.479E+02
6198106Ethylisopropyl Ether  30625-54-7512100000088.150O(C(C)C)CC453145.65337.01253.4327E+031.794E+02
6199998Ethyl-t-Butyl Ether1.47E−11199030628-81-96141000000102.177O(CCCC)CC      
6243372Dibutyl Ether2.89E−11199832142-96-18181000000130.230O(CCCC)CCCC847177.95413.44252.5632E+025.966E+00
6298107Dibutyl Ether2.89E−11199832142-96-18181000000130.230O(CCCC)CCCC847177.95413.44252.5632E+025.966E+00
634332214 Butanediol  11110-63-4410200000090.122OCCCCO332293.05501.15201.0000E+061.030E−02
6343367Glycol Ether  30111-46-64103000000106.122O(CCO)CCO337262.70518.15251.0000E+065.595E−03
6343368Glycol  32107-21-126200000062.068OCCO132260.15470.45251.0000E+069.058E−02
6343369Propylene Glycol  3057-55-638200000076.095OCC(O)C217213.15460.75251.0000E+061.272E−01
6343370Ethylene Glycol  30107-21-126200000062.068OCCO132260.15470.45251.0000E+069.058E−02
6343371Hexylene Glycol  30107-41-56142000000118.176OC(CC(O)(C)C)C614223.15470.6500.0000E+001.240E−02
6343373Diethylene Glycol  32111-46-64103000000106.122O(CCO)CCO337262.70518.15251.0000E+065.595E−03
6343374Dipropylene Glycol  32110-98-56143000000134.175O(CC(O)C)CC(O)C617233.00504.95251.0000E+063.137E−02
6343375Triethylene Glycol  32112-27-66144000000150.175O(CCOCCO)CCO620265.79551.00201.0000E+061.300E−03
6343377Carbitol  30111-90-06143000000134.175O(CCOCC)CCO618195.15475.15201.0000E+061.245E−01
6343378Methyl Carbitol  30111-77-35123000000120.148O(CCOC)CCO457197.15466.75201.0000E+061.775E−01
6343379Butyl Carbitol  30112-34-58183000000162.229O(CCOCCO)CCCC856205.15504.15201.0000E+062.167E−02
6343380Glycerol  3256-81-538300000092.095OCC(O)CO219291.33563.15251.0000E+061.655E−04
6343381Polyethylene Glycol  3225322-68-30000000000.000(C6H11NO)x      
6370005Dipropylene Glyco  32110-98-56143000000134.175O(CC(O)C)CC(O)C617233.00504.95251.0000E+063.137E−02
6370006Methyl Isobutyl Car  32 0000000000.000       
6370011Propylene Glycol Mo  32 0000000000.000       
6370012Propylene Glycol Mo  32 0000000000.000       
6370018Acetal  28105-57-76142000000118.176O(C(OCC)C)CC612203.15444.47201.0000E+062.732E+01
6398080Butandiol  32107-88-0410200000090.122OCCC(O)C331196.15480.1500.0000E+001.978E−02
6398096Carbitol  30111-46-64103000000106.122O(CCO)CCO337262.70518.15251.0000E+065.595E−03
64433122-(2-Butoxyethoxy)-Ethanol  32112-34-58183000000162.229O(CCOCCO)CCCC856205.15504.15201.0000E+062.167E−02
64433131-Ethoxy-2-Propanol  321569-02-45122000000104.149 454183.15424.5000.0000E+003.084E+00
6443335Methoxyethoxyethanol  32111-77-35123000000120.148O(CCOC)CCO457197.15466.75201.0000E+061.775E−01
6443337Butoxyethoxyethanol  32112-34-58183000000162.229O(CCOCCO)CCCC856205.15504.15201.0000E+062.167E−02
6443430Methyl Formate1.82E−13199732107-31-324200000060.053O = COC115174.15304.90207.2606E+035.822E+02
6443432Methylacetate3.45E−1319962779-20-936200000074.079O = C(OC)C188175.15330.09207.2630E+042.129E+02
6443433Ethyl Acetate1.82E−12199627141-78-648200000088.106O = C(OCC)C305189.60350.21251.6013E+049.270E+01
6443434n-Propyl acetate3.57E−12199629109-60-45102000000102.133O = C(OCCC)C420178.15374.65252.6908E+033.303E+01
6443438Ethyl Acrylate  11140-88-5582000000100.117O = C(OCC)C = C392201.95372.65253.6588E+033.829E+01
6443444Isopropyl acetate3.98E−12199728108-21-45102000000102.133O = C(OC(C)C)C419199.75361.65255.2404E+035.990E+01
6443459C5 Ester  29105-37-35102000000102.133 417199.25372.25253.9521E+033.641E+01
6443471Dimethylbutanedioate1.40E−12199832106-65-06104000000146.143O = C(OC)CCC( = O)OC      
6443476Dimethylhexanedioate  32627-93-08144000000174.197O = C(OC)CCCCC( = O)OC      
6443477Dimethylpentanedioate  32 7124000000160.170       
64981102-(2-Butoxyethoxy)-  32 0000000000.000       
64981111-Ethoxy-2-Propanol  321569-02-45122000000104.149 454183.15424.5000.0000E+003.084E+00
6543308Butyl Cellosolve1.94E−11199630111-76-26142000000118.176O(CCCC)CCO612203.15444.47201.0000E+068.615E−01
6543310Methyl Cellosolve1.14E−111997 109-86-438200000076.095O(CCO)C      
6543311Cellosolve2.12E−11199730110-80-5410200000090.122O(CCO)CC336-408.15201.0000E+065.258E+00
6543435n-Butyl Acetate5.73E−12199629123-86-46122000000116.160O = C(OCCCC)C578199.65399.15251.0607E+031.143E+01
6543437Methyl Acrylate2.50E−1119941196-33-346200000086.090O = C(OC) = C272196.32353.35231.0894E+048.591E+01
6543440Butyl Acrylate  11141-32-27122000000128.171O = C(OCCCC)C = C699208.55421.00202.2520E+025.401E+00
6543441Methyl Methacrylate2.60E−1119941180-62-6582000000100.117O = C(OC)C( = C)C393224.95373.4500.0000E+003.824E+01
6543445Methyl Amyl acetate  32108-84-98162000000144.214O = C(OC(CC(C)C)C)C      
6543446Isobutylacetate6.00E−12199729110-19-06122000000116.160O = C(OCC(C)C)C583174.30389.80259.8228E+021.767E+01
6543451Isobutyl Isobutyrate  2997-85-88162000000144.214O = C(OCC(C)C)C(C)C826192.45420.65257.1239E+014.291E+00
6543452Cellosolve Acetate1.05E−11199330111-15-96123000000132.159O = C(OCCOCC)C589211.45429.45203.9124E+042.318E+00
6543453Vinyl Acetate4.90E−11199211108-05-446200000086.090O = C(OC = C)C273180.35345.65255.4524E+031.137E+02
6543454Methyl Palmitate  32112-39-017342000000270.456O = C(OC)CCCCCCCCCCCCCCC      
6543455Methyl Myristate  32124-10-715302000000242.402O = C(OC)CCCCCCCCCCCCC      
6543456Methyl Stearate  32112-61-819382000000298.510O = C(OC)CCCCCCCCCCCCCCCCC      
6543457Methylal4.86E−12199732109-87-538200000076.095O(COC)C216168.35315.00206.6045E+043.960E+02
6543458Substituted C9 Ester (C12)  32 12242000000200.321       
6543460Methyl C11 Ester  30 13262000000214.348       
6543461Methyl C12 Ester  30 14282000000228.375       
6543462Methyl C13 Ester  30 15302000000242.402       
6543463Methyl C14 Ester  30 16322000000256.429       
6543464Methyl C15 Ester  32 17342000000270.456       
6543465Methyl C19 Ester  30 21422000000326.563       
6543466Methyl C20 Ester  30 22442000000340.590       
6543468Isobutyl Acrylate  32106-63-87122000000128.171O = C(OCC(C)C)C = C700212.00405.15232.8159E+028.000E+00
6543469Butoxyethoxyethanol Acetate  30124-17-410204000000204.266O = C(OCCOCCOCCCC)C      
6543470Methyl Dodecanoate  32111-82-013262000000214.348O = C(OC)CCCCCCCCCCC1194267.76508.62251.9449E−044.046E−03
6543472Butoxybutene  32 8161000000128.214       
6543473Ethylhexanoate  32123-66-08162000000144.214O = C(OCC)CCCCC      
6543474Methylmethylpropenoate2.60E−1119943280-62-6582000000100.117O = C(OC)C( = C)C393224.95373.4500.0000E+003.824E+01
6543475Methylethylpentanoate  32 8162000000144.214       
6543569Methoxyethoxybutanone  32 6122000000116.160       
6545455Butyl Benzoate  15136-60-711142000000178.231O = C(OCCCC)c(cccc1)c11107251.65523.1500.0000E+003.347E−02
6598074Butyl Cellosolve1.94E−11199630111-76-26142000000118.176O(CCCC)CCO612203.15444.47201.0000E+068.615E−01
6598114Methyl Isobutyrate  32547-63-75102000000102.133O = C(OC)C(C)C      
6598115Isoamyl Isobutyrate  32 0000000000.000       
6598116Substituted C7 Ester  32 0000000000.000       
6598117Substituted C9 Ester  32 0000000000.000       
6598118Methylacrylate2.50E−1119941196-33-346200000086.090O = C(OC) = C272196.32353.35231.0894E+048.591E+01
6598119Vinyl Acetate4.90E−11199211108-05-446200000086.090O = C(OC = C)C273180.35345.65255.4524E+031.137E+02
6598121Methylmethacrylate2.60E−1119941180-62-6582000000100.117O = C(OC)C( = C)C393224.95373.4500.0000E+003.824E+01
6643450Dimethyl Formamide  3268-12-237110000073.095O = CN(C)C205212.72426.1500.0000E+003.925E+00
6643603Maleic Anhydride1.45E−12199432108-31-642300000098.058O = C(OC( = O)C = 1)C1238326.00475.1500.0000E+003.621E−01
6643604Acetic anhydride  32108-24-7463000000102.090O = C(OC( = O)C)C274200.15411.78253.0430E+045.477E+00
6643704Acrylonitrile8.50E−12199229107-13-13301