Journal of Geophysical Research: Atmospheres

Comparison of measurements and model calculations of stratospheric bromine monoxide



[1] Ground-based zenith sky UV–visible measurements of stratospheric bromine monoxide (BrO) slant column densities are compared with simulations from the SLIMCAT three-dimensional chemical transport model. The observations have been obtained from a network of 11 sites, covering high and midlatitudes of both hemispheres. This data set gives for the first time a near-global picture of the distribution of stratospheric BrO from ground-based observations and is used to test our current understanding of stratospheric bromine chemistry. In order to allow a direct comparison between observations and model calculations, a radiative transfer model has been coupled to the chemical model to calculate simulated slant column densities. The model reproduces the observations in general very well. The absolute amount of the BrO slant columns is consistent with a total stratospheric bromine loading of 20 ± 4 ppt for the period 1998–2000, in agreement with previous estimates. The seasonal and latitudinal variations of BrO are well reproduced by the model. In particular, the good agreement between the observed and modeled diurnal variation provides strong evidence that the BrO-related bromine chemistry is correctly modeled. A discrepancy between observed and modeled BrO at high latitudes during events of chlorine activation can be resolved by increasing the rate constant for the reaction BrO + ClO → BrCl + O2 to the upper limit of current recommendations. However, other possible causes of the discrepancy at high latitudes cannot be ruled out.