SEARCH

SEARCH BY CITATION

References

  • Aguado, E., Radiation balances of melting snow covers at an open site in the central Sierra Nevada, California, Water Resour. Res., 21, 10341049, 1985.
  • Amthor, J. S., et al., Boreal forest CO2 exchange and evapotranspiration predicted by nine ecosystem process models: Inter-model comparisons and relations to field measurements, J. Geophys. Res., 106, 33,62333,648, 2001.
  • Atjay, G. L., P. Ketner, and P. Duvigenaud, Terrestrial primary production and phytomass, in The Global Carbon Cycle, edited by B. E. Bolin et al., vol. 13, pp. 129181, John Wiley, New York, 1977.
  • Auclair, A. N. D., and T. B. Carter, Forest wildfires as a recent source of CO2 at northern latitudes, Can. J. For. Res., 23, 15281536, 1993.
  • Barber, V. A., G. P. Juday, and B. P. Finney, Reduced growth of Alaska white spruce in the twentieth century from temperature-induced drought stress, Nature, 405, 668673, 2000.
  • Beltrami, H., and J. C. Mareschal, Ground temperature changes in eastern Canada: Borehole temperature evidence compared with proxy data, Terra Nova, 5, 2128, 1994.
  • Bonan, G. B., and K. VanCleve, Soil temperature, nitrogen mineralization, and carbon source-sink relationships in boreal forests, Can. J. For. Res., 22, 629639, 1992.
  • Brais, S., P. David, and R. Ouimet, Impacts of wild fire severity and salvage harvesting on the nutrient balance of jack pine and black spruce boreal stands, For. Ecol. Manage., 137, 231243, 2000.
  • Brown, R. J. E., Influence of vegetation on permafrost, in Proceedings, Permafrost International Conference, Publ. 1287, pp. 2025, NAS/NRC, Washington D. C., 1963.
  • Brown, R. J. E., Some observations on the influence of climatic and terrain features on permafrost at Norman Wells, N.W.T. Can. J. Earth Sci., 2, 1531, 1965.
  • Brown, R. J. E., Effects of fire on the permafrost ground thermal regime, in The Role of Fire in Northern Circumpolar Ecosystems, edited by R. W. Wein, and D. A. MacLean, pp. 97110, John Wiley, New York, 1983.
  • Buchmann, N., and E. Schulze, Net CO2 and H2O fluxes of terrestrial ecosystems, Global Biogeochem. Cycles, 13, 751760, 1999.
  • Burke, R. A., R. G. Zepp, M. A. Tarr, W. L. Miller, and B. J. Stocks, Effect of fire on soil-atmosphere exchange of methane and carbon dioxide in Canadian boreal forest sites, J. Geophys. Res., 102, 29,28929,300, 1997.
  • Chapin, F. S.III, and E. Mathews, Boreal carbon pools: Approaches and constraints in global extrapolations, in Carbon Cycling in Boreal Forests and Sub-Arctic ecosystems, edited by T. S. Vinson, and T. P. Kolchugina, pp. 920, U.S. Dept. of Commer., Washington, D. C., 1993.
  • Clein, J. S., B. L. Kwiatkowski, A. D. McGuire, J. E. Hobbie, E. B. Rastetter, J. M. Melillo, and D. W. Kicklighter, Modeling carbon responses of tundra ecosystems to historical and projected climate: A comparison of a fine- and coarse-scale ecosystem model for identification of process-based uncertainties, Global Change Biol., 6(suppl. 1), 127140, 2000.
  • Clein, J. S., A. D. McGuire, X. Zhang, D. W. Kicklighter, J. M. Melillo, S. C. Wofsy, and P. G. Jarvis, The role of nitrogen dynamics in modeling historical and projected carbon balance of mature black spruce ecosystems across North America: Comparisons with CO2 fluxes measured in the Boreal Ecosystem Atmosphere Study (BOREAS), Plant Soil, 242, 1532, 2002.
  • Coughlan, J. C., and S. W. Running, Regional ecosystem simulation: A general model for simulating snow accumulation and melt in mountainous terrain, Landscape Ecol., 12, 119136, 1997.
  • Coughlan, J. C., Biophysical aggregation of a forested landscape using a knowledge-based model, Ph.D. thesis, 111 pp., Univ. of Montana, Missoula, Mont., 1991.
  • De Grandpre, L., L. Gagnon, and Y. Bergeron, Changes in the understorey of Canadian southern boreal forest after fire, J. Veg. Sci., 4, 803810, 1993.
  • Dilley, A. C., On the computer calculation of vapor pressure and specific humidity gradients from psychrometric data, J. Appl. Meteorol., 7, 717719, 1968.
  • Driscoll, K. G., J. M. Arocena, and H. B. Massicotte, Post-fire soil nitrogen content and vegetation composition in Sub-boreal spruce forests of British Columbia's central interior, Canada, For. Ecol. Manage., 121, 227237, 1999.
  • Dyrness, C. T., and R. A. Norum, The effects of experimental fires on black spruce forest floors in interior Alaska, Can. J. For. Res., 13, 879893, 1983.
  • Dyrness, C. T., K. Van Cleve, and J. D. Levison, The effect of wildfire on soil chemistry in four forest types in interior Alaska, Can. J. For. Res., 19, 13891396, 1989.
  • Flannigan, M. D. F., and C. E. Van Wagner, Climate change and wildfire in Canada, Can. J. For. Res., 21, 6672, 1991.
  • French, N. H. F., et al., Controls on patterns of biomass burning in Alaskan boreal forests, in Fire, Climate Change, and Carbon Cycling in the North American Boreal Forest, Ecol. Stud. Ser., vol. 138, edited by E. S. Kasischke, and B. J. Stocks, pp. 148163, Springer-Verlag, New York, 2000.
  • Frolking, S., et al., Modelling temporal variability in the carbon balance of a spruce/moss boreal forest, Global Change Biol., 2, 343366, 1996.
  • Gorham, E., Northern peatlands: Role in the carbon cycle and probable responses to climatic warming, Ecol. Appl., 1, 182195, 1991.
  • Goulden, M. L., B. C. Daube, S. M. Fan, D. J. Sutton, A. Bazzaz, J. W. Munger, and S. C. Wofsy, Physiological responses of black spruce forest to weather, J. Geophys. Res., 102, 28,98728,996, 1997.
  • Goulden, M. L., et al., Sensitivity of boreal forest carbon balance to soil thaw, Science, 279, 210217, 1998.
  • Gower, S. T., R. E. McMurtrie, and D. Murty, Aboveground net primary productivity decline with stand age: Potential causes, Tree, 11, 378382, 1996.
  • Gower, S. T., J. G. Vogel, J. M. Norman, C. J. Kucharik, S. J. Steele, and T. K. Stow, Carbon distribution and aboveground net primary production in aspen, jack pine, and black spruce stands in Saskatchewan and Manitoba, Canada, J. Geophys. Res., 102, 29,02929,041, 1997.
  • Grace, J. C., Some effects of wind on plants, in Plants and Their Atmospheric Environment, edited by J. Grace, E. D. Ford, and P. G. Jarvis, pp. 3156, Blackwell, Malden, Mass., 1981.
  • Grogan, P., T. D. Bruns, and F. S. Chapin III, Fire effects on ecosystem nitrogen cycling in a California bishop pine forest, Oecologia, 122, 537544, 2000.
  • Harden, J. W., K. P. O'Neill, S. E. Trumbore, H. Veldhuis, and B. J. Stocks, Moss and soil contributions to the annual net carbon flux of a maturing boreal forest, J. Geophys. Res., 102, 28,80528,816, 1997.
  • Harden, J. W., T. Fries, and T. Huntington, Mississippi Basin Carbon Project—Upland Soil Database for Northwestern Mississippi, Open-file Rep. 98-440, U.S. Geol. Surv., Menlo Park, Calif., 1998.
  • Harden, J. W., S. E. Trumbore, B. J. Stocks, A. Hirsch, S. T. Gower, K. P. O'Neill, and E. S. Kasischke, The role of fire in the boreal carbon budget, Global Change Biol., 6(suppl. 1), 174184, 2000.
  • Haxeltine, A., Modeling the vegetation of the Earth, Ph.D. thesis, 124 pp., Lund Univ., Sweden, 1996.
  • Helvey, J. D., A summary of rainfall interception by certain conifers of North America, in Proceedings of the Third International Symposium for Hydrology Professors Biological Effects in the Hydrological Cycle, edited by E. J. Monke, pp. 103113, Purdue Univ., West Lafayette, Ind., 1971.
  • Helvey, J. D., and J. H. Patric, Canopy and litter interception by hardwoods of eastern United States, Water Resour. Res., 1, 193206, 1965.
  • Hess, J. C., C. A. Scott, G. L. Hufford, and M. D. Fleming, El Nino and its impact on fire weather conditions in Alaska, Int. J. Wildland Fire, 10, 113, 2001.
  • Jarvis, P. G., The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field, Philos. Trans. R. Soc. London, Ser. B, 273, 593610, 1976.
  • Jarvis, P. G., and J. B. Moncrieff, The CO2 Exchanges of Boreal Black Spruce Forest, in Collected Data of The Boreal Ecosystem-Atmosphere Study [CD-ROM], edited by J. Newcomer et al., NASA, Greeenbelt, Md., 2000.
  • Jensen, M. E., and H. R. Haise, Estimating evapotranspiration from solar radiation, J. Irrig. Drain. Div., Am. Soc. Civ. Eng., 4, 1541, 1963.
  • Kasischke, E. S., N. L. Christensen, and B. J. Stocks, Fire, global warming, and the carbon balance of boreal forests, Ecol. Appl., 5, 437451, 1995.
  • Kasischke, E. S., K. P. O'Neill, N. H. F. French, and L. L. Borgeau-Chavez, Controls on patterns of biomass burning in Alaskan boreal forests, in Fire, Climate Change, and Carbon Cycling in the North American Boreal Forest, Ecol. Stud. Ser., vol. 138, edited by E. S. Kasischke, and B. J. Stocks, pp. 148163, Springer-Verlag, New York, 2000.
  • Kurz, W. A., and M. J. Apps, Retrospective assessment of carbon flows in Canadian boreal forests, in Forest Ecosystems, Forest Management and the Global Carbon Cycle, NATO Adv. Sci. Inst. Ser., edited by M. J. Apps, and D. T. Price, Springer-Verlag, New York, 1995.
  • Kurz, W. A., and M. J. Apps, A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector, Ecol. Appl., 9, 56547, 1999.
  • Kurz, W. A., M. J. Apps, B. J. Stocks, and W. J. A. Volney, Global climate change: Disturbance regions and tropospheric feedbacks of temperate and boreal forests, in Biotic Feedbacks in the Global Climate System, edited by G. M. Woodwell, and F. T. Makenzie, pp. 119133, Oxford Univ. Press, New York, 1995.
  • Lachenbruch, A. H., and B. V. Marshall, Changing climate: Geothermal evidence from permafrost in the Alaskan Arctic, Science, 234, 689696, 1986.
  • Landsberg, J. J., Physiological Ecology of Forest Production, Academic, San Diego, Calif., 1986.
  • Luc, L., and S. Luc, Vegetation changes caused by recent fires in the northern boreal forest of eastern Canada, J. Veg. Sci., 9, 483492, 1998.
  • Lynch, A. H., and W. Wu, Impacts of fire and warming on ecosystem uptake in the boreal forest, J. Clim., 13, 23342338, 1999.
  • Lynham, T. J., G. M. Wickware, and J. A. Mason, Soil chemical changes and plant succession following experimental burning in immature jack pine, Can. J. Soil Sci., 78, 93104, 1998.
  • McGuire, A. D., and J. E. Hobbie, Global climate change and the equilibrium responses of carbon storage in arctic and subarctic regions, in Modeling the Arctic System: A Workshop Report on the State of Modeling in the Arctic System Science Program, pp. 5354, The Arctic Res. Consortium of the U.S., Fairbanks, Alaska, 1997.
  • McGuire, A. D., J. M. Melillo, D. W. Kicklighter, and L. A. Joyce, Equilibrium responses of soil carbon to climate change: Empirical and process-based estimates, J. Biogeogr., 22, 785796, 1995.
  • McGuire, A. D., J. M. Melillo, D. W. Kicklighter, Y. Pan, X. Xiao, J. Helfrich, B. Moore III, C. J. Vorosmarty, and A. L. Schloss, Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: Sensitivity to changes in vegetation nitrogen concentration, Global Biogeochem. Cycles, 11, 173189, 1997.
  • McGuire, A. D., J. M. Melillo, J. T. Randerson, W. J. Parton, M. Heimann, R. A. Meier, J. S. Clein, D. W. Kicklighter, and W. Sauf, Modeling the effects of snowpack on heterotrophic respiration across northern temperate and high latitude regions: Comparison with measurements of atmospheric carbon dioxide in high latitudes, Biogeochemistry, 48, 91114, 2000a.
  • McGuire, A. D., J. Clein, J. M. Melillo, D. W. Kicklighter, R. A. Meier, C. J. Vorosmarty, and M. C. Serreze, Modeling carbon responses of tundra ecosystems to historical and projected climate: The sensitivity of pan-arctic carbon storage to temporal and spatial variation in climate, Global Change Biol., 6, S141S159, 2000b.
  • McGuire, A. D., et al., Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land-use effects with four process-based ecosystem models, Global Biogeochem. Cycles, 15, 183206, 2001.
  • McMurtrie, R., E. S. T. Gower, M. G. Ryan, and J. J. Landsberg, Forest productivity: Explaining its decline with stand age, Bull. Ecol. Soc. Am., 76, 152154, 1995.
  • McNaughton, K. G., Evaporation and advection, I, Evaporation from extensive homogeneous surfaces, Q. J. R. Meteorol. Soc., 102, 81191, 1976.
  • McNaughton, K. G., and P. G. Jarvis, Predicting effects of vegetation changes on transpiration and evaporation, in Water Deficit and Plant Growth, edited by T. T. Kozlowski, vol. 7, pp. 147, Academic, San Diego, Calif., 1983.
  • Melillo, J. M., D. W. Kicklighter, A. D. McGuire, W. T. Peterjohn, and K. M. Newkirk, Global change and its effects on soil organic carbon stocks, in Role of Nonliving Organic Matter in the Earth's Carbon Cycle, edited by R. G. Zepp, and C. Sonntag, pp. 175189, John Wiley, New York, 1995.
  • Monteith, J. L., Principles of Environmental Physics, Edward Arnold, London, 1973.
  • Monteith, J. L., and M. H. Unsworth, Principles of Environmental Physics, 2nd ed., Edward Arnold, London, 1990.
  • Mosteller, F., R. E. K. Rourke, and G. B. Thomas Jr., Probability With Statistical Applications, Addison-Wesley, Reading, Mass., 1961.
  • Murphy, P. J., B. J. Stocks, E. S. Kasischke, D. Barry, M. E. Alexander, N. H. F. French, and J. P. Mudd, Historical fire records in the North American boreal forest, in Fire, Climate Change and Carbon Cycling in North American Boreal Forests, Ecol. Stud. Ser., vol. 138, edited by E. S. Kasischke, and B. J. Stocks, pp. 274288, Springer-Verlag, New York, 2000.
  • Murray, F. W., On the computation of saturation vapor pressure, J. Appl. Meteorol., 6, 203204, 1967.
  • Neilson, R. P., Vegetation redistribution: A possible biosphere source of CO2 during climate change, Water Air Soil Pollut., 70, 659673, 1993.
  • Neilson, R. P., A model for predicting continental scale vegetation distribution and water balance, Ecol. Appl., 5, 362386, 1995.
  • Newcomer, J., et al. (Eds.), Collected Data of The Boreal Ecosystem-Atmosphere Study [CD-ROM], NASA, Greenbelt, Md., 2000.
  • Oechel, W. C., and K. Van Cleve, The role of bryophytes in nutrient cycling in the taiga, in Forest Ecosystems in the Alaskan Taiga, edited by K. Van Cleve et al., pp. 121137, Springer-Verlag, New York, 1986.
  • Oechel, W. C., and G. L. Vourlitis, The effects of climate change on land-atmosphere feedbacks in arctic tundra regions, Trends Ecol. Evol., 9, 324329, 1994.
  • O'Neill, K. P., Changes in carbon dynamics following wildfire in soils of interior Alaska, Ph.D. thesis, Duke Univ., Durham, N. C., 2000.
  • O'Neill, K. P., E. S. Kasischke, and D. D. Richter, Seasonal and decadal patterns of soil carbon uptake and emission along an age-sequence of burned black spruce stands in interior Alaska, J. Geophys. Res., 107, doi:10.1029/2001JD000443, in press, 2002.
  • Osterkamp, T. E., and V. E. Romanovsky, Evidence for warming and thawing of discontinuous permafrost in Alaska, Permafrost Periglacial Processes, 10(1), 1737, 1999.
  • Pan, Y., A. D. McGuire, J. M. Melillo, D. W. Kicklighter, S. Sitch, and I. C. Prentice, A biogeochemistry-based successional model and its application along a moisture gradient in the continental United States, J. Vegetation Sci., 13, 369382, 2002.
  • Post, W. M., W. R. Emanuel, P. J. Zinke, and A. G. Stangenberger, Carbon pools and world life zones, Nature, 298, 156159, 1982.
  • Potter, C. S., et al., Comparison of boreal ecosystem model sensitivity to variability in climate and forest site parameters, J. Geophys. Res., 106, 33,67133,688, 2001.
  • Randerson, J. T., M. V. Thompson, T. J. Conway, I. Y. Fung, and C. B. Field, The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide, Global Biogeochem. Cycles, 11, 535560, 1997.
  • Rapalee, G., S. E. Trumbore, E. A. Davidson, J. W. Harden, and H. Veldhuis, Estimating soil carbon stocks and fluxes in a boreal forest landscape, Global Biogeochem. Cycles, 12, 687701, 1998.
  • Rastetter, E. B., P. M. Vitousek, C. Field, G. R. Shaver, D. Herbert, and G. I. Agren, Resource optimization and symbiotic nitrogen fixation, Ecosystems, 4, 369388, 2001.
  • Riseborough, D. W., Modeling climatic influences on permafrost at a boreal forest site, unpublished M.A, thesis, 172 pp., Carleton Univ., Ottawa, 1985.
  • Rouse, W. R., Microclimatic changes accompanying burning in sub-arctic lichen woodland, Arct. Alp. Res., 8, 357376, 1976.
  • Running, S. W., and J. C. Coughlan, A general model of forest ecosystem processes for regional applications, I, Hydrologic balance, canopy gas exchange and primary production processes, Ecol. Modell., 42, 125154, 1988.
  • Ryan, M. G., A simple method for estimating gross carbon budgets for vegetation in forest ecosystems, Tree Physiol., 9, 255266, 1991.
  • Ryan, M. G., D. Binkley, and J. H. Fownes, Age-related decline in forest productivity: Pattern and process, Adv. Ecol. Res., 7, 213262, 1996.
  • Ryan, M. G., M. B. Lavigne, and S. T. Gower, Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate, J. Geophys. Res., 102, 28,87128,883, 1997.
  • Schimmel, J., and A. Granstrom, Fire severity and vegetation response in the boreal Swedish forest, Ecology, 77, 14361450, 1996.
  • Schulze, E. D., C. Wirth, and M. Heimann, Managing forests after Kyoto, Science, 289, 20582059, 2000.
  • Sellers, P. J., et al., BOREAS in 1997: Experiment overview, scientific results, and future directions, J. Geophys. Res., 102, 28,73128,769, 1997.
  • Serreze, M. C., J. E. Walsh, F. S. Chapin III, T. Osterkamp, M. Dyurgerov, V. Romanovsky, W. C. Oechel, J. Morison, T. Zhang, and R. G. Barry, Observational evidence of recent change in the northern high-latitude environment, Clim. Change, 46, 159207, 2000.
  • Smith, C. K., M. R. Coyea, and A. D. Munson, Soil carbon, nitrogen, and phosphorus stocks and dynamics under disturbed black spruce forests, Ecol. Appl., 10, 775788, 2000.
  • Stocks, B. J., M. A. Fosberg, M. B. Wotton, T. J. Lynham, and K. C. Ryan, Climate change and forest fire activity in North American boreal forests, in Fire, Climate Change, and Carbon Cycling in the North American Boreal Forest, edited by E. S. Kasischke, and B. J. Stocks, pp. 312319, Springer-Verlag, New York, 2000.
  • Thie, J., Distribution and thawing of permafrost in the southern part of the discontinuous permafrost zone in Manitoba, Arctic, 27, 189200, 1974.
  • Thornton, P. E., Biome-BGC version 4.1.1, Numer. Terradyn. Simul. Group (NTSG), Sch. of For., Univ. of Mont., Missoula, Mont., 2000.
  • Tian, H., J. M. Melillo, D. W. Kicklighter, A. D. McGuire, and J. Helfrich, The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States, Tellus, Ser. B, 51, 414452, 1999.
  • Trumbore, S. E., and J. W. Harden, Accumulation and turnover of carbon in organic and mineral soils of the BOREAS northern study area, J. Geophys. Res., 2, 28,81628,830, 1997.
  • Van Cleve, K., C. T. Dyrness, L. A. Viereck, J. Fox, F. S. Chapin III, and W. Oechel, Taiga ecosystems in interior Alaska, Bioscience, 33(1), 3944, 1983.
  • Van Cleve, K., L. A. Viereck, and C. T. Dyrness, State factor control of soil and forest succession along the Tanana river in interior Alaska, U.S.A. Arct. Alp. Res., 28, 388400, 1996.
  • Viereck, L. A., Ecological effects of river flooding and forest fires on permafrost in the taiga of Alaska, Permafrost, North Am. Contrib. Int. Conf., 2nd, 6067, 1972.
  • Viereck, L. A., Wildfire in the taiga of Alaska, Quat. Res., 3, 465495, 1973.
  • Viereck, L. A., The effects of fire in black spruce ecosystems of Alaska and northern Canada, in The Role of Fire in Northern Circumpolar Ecosystems (Scope 18), edited by R. W. Wein, and D. A. MacLean, pp. 132145, John Wiley, New York, 1983.
  • Vorosmarty, C. J., B. J. Peterson, E. B. Rastetter, and P. A. Steudler, Continental scale models of water balance and fluvial transport: An application to South America, Global Biogeochem. Cycles, 3, 241265, 1989.
  • Wan, S., D. Hui, and Y. Luo, Fire effects on nitrogen pools and dynamics in terrestrial ecosystems: A meta-analysis, Ecol. Appl., 11, 13491365, 2001.
  • Wang, C., S. T. Gower, Y. Wang, H. Zhao, P. Yan, and B. P. Bond-Lamberty, The influence of fire on carbon distribution and net primary production of boreal Larix gmelinii forests in north-eastern China, Global Change Biol., 7, 719730, 2001.
  • Wang, C., B. P. Bond-Lamberty, and S. T. Gower, Soil surface CO2 flux in boreal black spruce fire chronosequence, J. Geophys. Res., 107, doi:10.1029/2001JD000861, in press, 2002.
  • Waring, R. H., and S. W. Running, Forest Ecosystems, Analysis at Multiple Scales, 2nd ed., pp. 370, Academic, San Diego, Calif., 1998.
  • Wardle, D. A., O. Zackrisson, and M.-C. Nilsson, The charcoal effect in Boreal forests: Mechanisms and ecological consequences, Oecologia, 115, 419426, 1998.
  • Weber, M. G., and K. Van Cleve, Nitrogen transformations in feather moss and forest floor layers of interior Alaska black spruce ecosystems, Can. J. For. Res., 14, 278290, 1984.
  • Williams, P. J., and M. W. Smith, The Frozen Earth, Fundamentals of Geocryology, pp. 306, Cambridge Univ. Press, New York, 1989.
  • Willmott, C. J., C. M. Rowe, and Y. Mintz, Climatology of the terrestrial seasonal water cycle, J. Clim., 5, 589606, 1985.
  • Wotton, B. M., and M. D. Flannigan, Length of the fire season in a changing climate, For. Chron., 69, 187192, 1993.
  • Yarie, J., and S. Billings, Carbon balance of the Taiga forest within Alaska, Can. J. For. Res., 32, 757767, 2002.
  • Yoshikawa, K., W. R. Bolton, V. E. Romanovsky, M. Fukuda, and L. D. Hinzman, Impacts of wildfire on the permafrost in the boreal forests of interior Alaska, J. Geophys. Res., 107, doi:10.1029/2001JD000438, in press, 2002.
  • Zackrisson, O., Influence of forest fires on the North Swedish boreal forest, Oikos, 29, 2232, 1977.
  • Zhuang, Q., V. E. Romanovsky, and A. D. McGuire, Incorporation of a permafrost model into a large-scale ecosystem model: Evaluation of temporal and spatial scaling issues in simulating soil thermal dynamics, J. Geophys. Res., 106, 33,64933,670, 2001.
  • Zimov, S. A., S. P. Davidov, G. M. Zimova, A. I. Davidova, F. S. Chapin, M. C. Chapin III, and J. F. Reynolds, Contribution of disturbance to increasing seasonal amplitude of atmospheric CO2, Science, 284, 19731976, 1999.
  • Zoltai, S. C., Cyclic development of permafrost in the peatlands of northwestern Alberta, Canada, Arct. Alp. Res., 25, 240246, 1993.