SEARCH

SEARCH BY CITATION

References

  • Artaxo, P., F. Gerab, M. A. Yamsoe, J. V. Martins, Fine mode aerosol composition at three long-term atmospheric monitoring sites in the Amazon Basin, J. Geophys., Res., 99, 2285722868, 1994.
  • Bekki, S., K. S. Law, Sensitivity of the atmospheric CH 4 growth rate to global temperature changes observed from 1980 to 1992, Tellus, Ser. B, 49, 409416, 1997.
  • Bekki, S., K. S. Law, J. A. Pyle, Effects of ozone depletion on atmospheric CH4 and CO concentrations, Nature, 371, 595597, 1994.
  • Cao, M., S. Marshall, K. Gregson, Global carbon exchange and methane emission from natural wetlands: Application of a process-based model, J. Geophys. Res., 101, 1439914414, 1996.
  • Cao, M., K. Gregson, S. Marshall, Global methane emission from wetlands and its sensitivity to climate change, Atmos. Environ., 3219, 32933299, 1998.
  • Christensen, T. R., I. C. Prentice, J. Kaplan, A. Haxeltine, S. Sitch, Methane flux from northern wetlands and tundra, Tellus, Ser. B, 48, 652661, 1996.
  • Denier van der Gon, H., Changes in CH 4 emission from rice fields from 1960 to 1990s, 1, Impacts of modern rice technology, Global Biogeochem. Cycles, 141, 6172, 2000.
  • Dlugokencky, E. J., K. A. Masarie, P. M. Lang, P. P. Tans, L. P. Steele, E. G. Nisbet, A dramatic decrease in the growth rate of atmospheric methane in the northern hemisphere during 1992, Geophys. Res. Lett., 211, 4548, 1994.
  • Dlugokencky, E. J., K. A. Masarie, P. M. Lang, P. P. Tans, Continuing decline in the growth rate of atmospheric methane, Nature, 393, 447450, 1998.
  • Dunfield, P., R. Knowles, R. Dumont, T. R. Moore, Methane production and consumption in temperate and subarctic peat soils: Response to temperature and pH, Soil Biol. Biochem., 25, 321326, 1993.
  • Dutton, E. G., J. R. Christy, Solar radiative forcing at selected locations and evidence for global lower tropospheric cooling following the eruptions of El Chichón and Pinatubo, Geophys. Res. Lett., 19, 23132316, 1992.
  • Etheridge, D. M., L. P. Steele, R. J. Francey, R. L. Langenfels, Atmospheric methane between 1000 A.D. and present: Evidence of anthropogenic emissions and climatic variability, J. Geophys. Res., 103, 1597915993, 1998.
  • Francey, R. J., M. R. Manning, C. E. Allison, S. A. Coram, D. M. Etheridge, R. L. Langenfels, D. C. Lowe, L. P. Steele, A history of δ13C in atmospheric CH 4 from the Cape Grim Air Archive and Antarctic firn air, J. Geophys. Res., 104, 2363123643, 1999.
  • Fung, I., J. John, J. Lerner, E. Matthews, M. Prather, L. P. Steele, P. J. Fraser, Three-dimensional model synthesis of the global methane cycle, J. Geophys. Res., 96, 1303313065, 1991.
  • Gibson, J. K., P. Källberg, S. Uppala, A. Hernandez, A. Nomura, E. Serrano, The ECMWF Re-Analysis (ERA), 1, ERA description, ECMWF Re-Anal. Proj. Rep. Ser., 1, 71, Eur. Cent. for Medium-Range Weather Forecasts, Reading, England, 1997.
  • Gleason, J. F., et al., Record low global ozone in 1992, Science, 260, 523526, 1993.
  • Gupta, M., S. Tyler, R. Cicerone, Modeling atmospheric δ13CH4 and the causes of recent changes in atmospheric CH4 amounts, J. Geophys. Res., 101, 2292322932, 1996.
  • Hao, W. M., D. E. Ward, Methane production from global biomass burning, J. Geophys. Res., 98, 2065720661, 1993.
  • Hein, R., P. J. Crutzen, M. Heimann, An inverse modeling approach to investigate the global atmospheric methane cycle, Global Biogeochem. Cycles, 111, 4376, 1997.
  • Hogan, K., R. Harriss, Comment on “A dramatic increase in the growth rate of atmospheric methane in the northern hemisphere during 1992,” by E. J. Dlugokencky et al., Geophys. Res. Lett., 21, 24452446, 1994.
  • Houweling, S., T. Kaminski, F. Dentener, J. Lelieveld, M. Heimann, Inverse modeling of methane sources and sinks using the adjoint of a global transport model, J. Geophys. Res., 104, 2613726160, 1999.
  • Houweling, S., F. Dentener, J. Lelieveld, B. Walter, E. Dlugokencky, The modeling of tropospheric methane: How well can point measurements be reproduced by a global model?, J. Geophys. Res., 105, 89819002, 2000.
  • Kalnay, E., et al., The NCEP/NCAR 40-year Reanalysis Project, Bull. Am. Meteorol. Soc., 77, 437471, 1996.
  • Karlsdottir, S. I., S. A. Isaksen, Changing methane lifetime: Possible cause for reduced growth, Geophys. Res. Lett., 27, 9396, 2000.
  • Khalil, M. A. K., R. A. Rasmussen, M. J. Shearer, R. W. Dalluge, L. Ren, C.-L. Duan, Factors affecting methane emissions from rice fields, J. Geophys. Res., 103, 2521925231, 1998.
  • Knorr, W., Satellite remote sensing and modelling of the global CO2 exchange of land vegetation: A sythesis study, dissertation,Max-Planck-Inst. fur Meteorol.,Hamburg, Germany,1997.
  • Krol, M., P. J. vanLeeuwen, J. Lelieveld, Global OH trend inferred from methylchloroform measurements, J. Geophys. Res., 103, 10,69710,711, 1998.
  • Labitzke, K., Stratospheric temperature changes after the Pinatubo eruption, J. Atmos. Sol. Terr. Phys., 56, 10271034, 1994.
  • Law, K. S., E. G. Nisbet, Sensitivity of the CH 4 growth rate to changes in CH 4 emissions from natural gas and coal, J. Geophys. Res., 101, 1438714397, 1996.
  • Levin, I., V. Hesshaimer, Refining of atmospheric transport model entries by the globally observed passive tracer distributions of 85krypton and sulfur hexafluoride (SF6), J. Geophys. Res., 101, 1674516755, 1996.
  • Biomass Burning and Global Change, 1, Remote Sensing and Modeling of Biomass Burning, and Biomass Burning in the Boreal ForestJ. E. Levine, MIT Press, Cambridge, Mass., 1996a.
  • Biomass Burning and Global Change, 2, Biomass Burning in the Tropical and Temperate EcosystemsJ. E. Levine, MIT Press, Cambridge, Mass., 1996b.
  • Lowe, D. C., C. A. M. Brenninkmeijer, G. W. Brailsford, K. R. Lassey, A. J. Gomez, Concentration and 13C records of atmospheric methane in New Zealand and Antarctica: Evidence for changes in methane sources, J. Geophys. Res., 99, 1691316925, 1994.
  • Lowe, D. C., M. R. Manning, G. W. Brailsford, A. M. Bromley, The 1991–1992 atmospheric methane anomaly: Southern hemisphere 13C decrease and growth rate fluctuations, Geophys. Res. Lett., 248, 857860, 1997.
  • Matthews, E., I. Fung, Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources, Global Biogeoch. Cycles, 11, 6186, 1987.
  • Matthews, E., I. Fung, J. Learner, Methane emission from rice cultivation: Geographic and seasonal distribution of cultivated areas and emissions, Global Biogeochem. Cycles, 51, 324, 1991.
  • Matthews, E., J. E. Bogner, R. Sass, H. Augenbraun, T. Smith, Historical methane emissions from anthropogenic sources: Contributors to the declining growth rate of atmospheric methane?, Eos Trans. AGU, 7945, Fall Meet. Suppl., F123, 1998.
  • Matthews, E., C. Prigent, C. Birkett, M. Coe, Remote sensing and modeling of large-scale wetland dynamics, Eos Trans. AGU, 8046, Fall Meet. Suppl., F60, 1999.
  • Matthews, E., B. Walter, J. Bogner, D. Sarma, B. Portney, Understanding the role of sources in interannual variations in the growth rate of atmospheric methane concentrations for the last two decades, Eos Trans. AGU, 8119, Spring Meet. Suppl., S123, 2000.
  • Neue, H.-U., P. A. Roger, Rice agriculture: Factors controlling emissions, Atmospheric Methane: Sources, Sinks, and Role in Global ChangeM. A. K. Khalil, 254297, Springer-Verlag, New York, 1993.
  • Öquist, M. G., B. H. Svensson, Non-tidal wetlands, Climate Change 1995, Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analysis, Contributions of Working Group H to the Second Assessment Report of the Intergovernmental Panel on Climate ChangeR. T. Watson, M. C. Zinyowera, R. H. Moss, D. J. Dokken, 215239, Cambridge Univ. Press, New York, 1996.
  • Quay, P. D., et al., Carbon isotopic composition of atmospheric CH4: Fossil and biomass burning source strengths, Global Biogeochem. Cycles, 51, 2547, 1991.
  • Quay, P., J. Stutsman, D. Wilbur, A. Snover, E. Dlugokencky, T. Brown, The isotopic composition of atmospheric methane, Global Biogeochem. Cycles, 132, 445461, 1999.
  • Rudolf, B., H. Hauschild, W. Ruth, U. Schneider, Comparison of raingauge analyses, satellite-based precipitation estimates and forecast model results, Adv. Space. Res., 7, 5362, 1996.
  • Rudolph, J., Anomalous methane, Nature, 368, 1920, 1994.
  • Sass, R. L., F. M. Fisher, F. T. Turner, M. F. Jund, Methane emission from rice fields as influenced by solar radiation, temperature, and straw incorporation, Global Biogeochem. Cycles, 54, 335350, 1991.
  • Schauffler, S. M., J. S. Daniel, On the effects of stratospheric circulation changes on circulation trends, J. Geophys. Res., 99, 2574725754, 1994.
  • Shearer, M. J., M. A. K. Khalil, Rice agriculture: Emissions, Atmospheric Methane: Sources, Sinks, and Role in Global ChangeM. A. K. Khalil, 230253, Springer-Verlag, New York, 1993.
  • Stendel, M., K. Arpe, Evaluation of the hydrological cycle in reanalyses and observationsRep. 228, 52Max-Planck-Inst. fur Meteorol., Hamburg, Germany, 1997.
  • Stieglitz, M., D. Rind, J. Famiglietti, C. Rosenzweig, An efficient approach to modeling the topographic control of surface hydrology for regional and global climate modeling, J. Clim., 10, 118137, 1997.
  • Tyler, S. C., D. C. Lowe, G. W. Brailsford, E. Dlugokencky, A. Manning, L. P. Steele, Carbon isotopic composition of atmospheric methane at a mid-continental site, Niwot Ridge, Colorado, Eos Trans. AGU, 7414, Spring. Meet. Suppl., 168, 1993.
  • Valentine, D. W., E. A. Holland, D. S. Schimel, Ecosystem and physiological controls over methane production in northern wetlands, J. Geophys. Res., 99, 15631571, 1994.
  • vanBodegom, P. M., A. J. M. Stams, Effects of alternative electron acceptors and temperature on methanogenesis in rice paddy soils, Chemosphere, 39, 167182, 1999.
  • Walter, B. P., Development of a process-based model to derive methane emissions from natural wetlands for climate studies, dissertation,Max-Planck-Inst. fur Meteorol.,Hamburg, Germany,1998.
  • Walter, B. P., M. Heimann, A process-based, climate-sensitive model to derive methane emissions from natural wetlands: Application to five wetland sites, sensitivity to model parameters, and climate, Global Biogeochem. Cycles, 143, 745765, 2000.
  • Walter, B. P., M. Heimann, E. Matthews, Modeling modern methane emissions from natural wetlands, 1, Model description and results,J. Geophys. Res., 106(D24), 2001.
  • Walter, B. P., M. Helmann, R. D. Shannon, J. R. White, A process-based model to derive methane emissions from natural wetlands, Geophys. Res. Lett., 2325, 37313734, 1996.
  • Westermann, P., Temperature regulation of methanogenesis in wetlands, Chemosphere, 26, 321328, 1993.