SEARCH

SEARCH BY CITATION

References

  • Aselmann, I., P. J. Crutzen, Global distribution of natural freshwater wetlands and rice paddies, their Net Primary Productivity, seasonality and possible methane emissions, J. Atmos. Chem., 8, 307358, 1989.
  • Bartlett, K. B., R. C. Harriss, Review and assessment of methane emissions from wetlands, Chemosphere, 26, 14261–320, 1993.
  • Bartlett, K. B., P. M. Crill, D. I. Sebacher, R. C. Harriss, J. O. Wilson, J. M. Melack, Methane flux from the central Amazonian flood-plain, J. Geophys. Res., 93, 15711582, 1988.
  • Boelter, D. H., Important physical properties of peat materialsProceedings of the Third International Peat CongressDep. of Energy, Mines and Resour. Canada, Natl. Res. Counc. of CanadaOttawa, 1968.
  • Bogner, J. E., R. L. Sass, B. P. Walter, Model comparisons of methane oxidation across a management gradient: Wetlands, rice production systems, and landfills, Global Biogeochem. Cycles, 144, 10211033, 2000.
  • Cao, M., S. Marshall, K. Gregson, Global carbon exchange and methane emission from natural wetlands: Application of a process-based model, J. Geophys. Res., 101, 1439914414, 1996.
  • Clement, R. J., S. B. Verma, E. S. Verry, Relating chamber measurements to eddy correlation measurements of methane flux, J. Geophys. Res., 100, 2104721056, 1995.
  • Conrad, R., Control of methane production in terrestrial ecosystems, Exchange of Trace Gases Between Terrestrial Ecosystems and the AtmosphereM. O. Andreae, D. S. Schimel, 3958, John Wiley, New York, 1989.
  • Devol, A. H., J. E. Richey, B. R. Forsberg, L. A. Martinelli, Seasonal dynamics of methane emissions from the Amazon River floodplain to the troposphere, J. Geophys. Res., 95, 1641716426, 1990.
  • Dise, N. B., Methane emission from Minnesota peatlands: Spatial and seasonal variability, Global Biogeochem. Cycles, 71, 123142, 1993.
  • Dlugokencky, E. J., K. A. Masarie, P. M. Lang, P. P. Tans, Continuing decline in the growth rate of atmospheric methane, Nature, 393, 447450, 1998.
  • Dunne, K. A., C. J. Willmott, Global distribution of plant-extractable water capacity of soil, Int. J. Climatol., 16, 1684116859, 1996.
  • Edwards, M. O., Global gridded elevation and bathymetry (ETOPO5), Digital raster data on a 5-minute geographic (lat/lon) 2160*4320 (centroid-registered) grid, NOAA Natl. Geophys. Data Cent., Boulder, Colo., 1989.
  • , Food and Agriculture Organization (FAO)/UNESCO,1971–1981: Soil Map of the World,1–10,Paris, France, 1971-1981.
  • Federer, C. A., Transpirational supply and demand: Plant, soil, and atmospheric effects evaluated by simulation, Water Resour. Res., 18, 355362, 1982.
  • Gale, M. R., D. F. Grigal, Vertical root distributions of northern tree species in relation to successional status, Can. J. Forest Res., 17, 829834, 1987.
  • Gibson, J. K., P. Källberg, S. Uppala, A. Hernandez, A. Nomura, E. Serrano, The ECMWF Re-Analysis (ERA), 1, ERA description, ECMWF Re-Anal. Proj. Rep. Ser., 1, 71, Eur. Cent. for Medium-Range Weather Forecasts, Reading, England, 1997.
  • Hansen, J., R. Ruedy, J. Glascoe, M. Sato, GISS analysis of surface temperature change, J. Geophys. Res., 104, 3099731022, 1999.
  • Hartge, K. H., R. Horn, Einführung in die Bodenphysik, Ferdinand Enke, Stuttgart, Germany, 1991.
  • Hein, R., P. J. Crutzen, M. Heimann, An inverse modeling approach to investigate the global atmospheric methane cycle, Global Biogeochem. Cycles, 111, 4376, 1997.
  • Hogan, K., R. Harriss, Comment on “A dramatic increase in the growth rate of atmospheric methane in the northern hemisphere during 1992,” by E. J. Dlugokencky et al., Geophys. Res. Lett., 21, 24452446, 1994.
  • Houweling, S., F. Dentener, J. Lelieveld, Simulation of preindustrial atmospheric methane to constrain the global source strength of natural wetlands, J. Geophys. Res., 105, 1724317255, 2000.
  • Jackson, R. B., J. Canadell, J. R. Ehleringer, H. A. Mooney, O. E. Sala, E. D. Schulze, A global analysis of root distributions for terrestrial biomes, Oecologia, 1083, 389411, 1996.
  • Jouzel, J., et al., Extending the Vostock ice-core record of paleoclimate to the penultimate glacial period, Nature, 364, 407412, 1993.
  • Kaduk, J., Simulation der Kohlenstoffdynamik der globalen Landbiosphare mit SILVAN-Modellbeschreibung und Ergebnisse, dissertation,Max-Planck-Inst. für Meteorol.,Hamburg, Germany,1996.
  • Khalil, M. A. K., R. A. Rasmussen, Sources, sinks and seasonal cycles of atmospheric methane, J. Geophys. Res., 88, 51315144, 1983.
  • Knorr, W., Satellite remote sensing and modelling of the global CO2 exchange of land vegetation: A sythesis study, dissertation,Max-Planck-Inst. für Meteorol.,Hamburg, Germany,1997.
  • Lelieveld, J., P. J. Crutzen, F. J. Dentener, Changing concentration, lifetime and climate forcing of atmospheric methane, Tellus, Set. B, 50, 128150, 1998.
  • Letts, M. G., N. T. Roulet, N. T. Comer, M. R. Skarupa, D. L. Verseghy, Parametrization of peatland hydraulic properties for the Canadian Land Surface Scheme, Atmos. Ocean, 381, 141160, 2000.
  • Matthews, E., Wetlands, in Atmospheric Methane: Its Role in the Global EnvironmentM. A. K. Khalil, 202233, Springer-Verlag, New York, 2000.
  • Matthews, E., I. Fung, Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources, Global Biogeochem. Cycles, 11, 6186, 1987.
  • Mitsch, W. J., J. G. Gosselink, Wetlands, Van Nostrand Reinhold, New York, 1993.
  • Murray, F. W., On the computation of saturation vapour pressure, J. Appl. Meteorol., 6, 203204, 1967.
  • Ramachandran, P., R. Ramachandran, Methane emission inventory from tropical coastal wetlands (Mangrove ecosystems)poster presented at the Joint International Symposium on Global Atmospheric ChemistryCACGP and IGACSeattle, Wash., 1998.
  • Reeburgh, W. S., J. Y. King, S. K. Regli, G. W. King, N. A. Auerbach, D. A. Walker, A CH4 emission estimate for the Kuparuk River basin, Alaska, J. Geophys. Res., 103, 2900529013, 1998.
  • Roulet, N. T., A. Jano, C. A. Kelly, L. F. Klinger, T. R. Moore, R. Protz, J. A. Ritter, W. R. Rouse, Role of the Hudson Bay lowland as a source of atmospheric methane, J. Geophys. Res., 99, 14391454, 1994.
  • Saarnio, S., J. Alm, J. Silvola, A. Lohila, H. Nykänen, P. J. Martikainen, Seasonal variation in CH4 emissions and production and oxidation potentials at microsites of an oligotrophic pine fen, Oecologia, 110, 414422, 1997.
  • Schimel, J. P., Plant transport and methane production as controls on methane flux from arctic wet meadow tundra, Biogeochemistry, 28, 183200, 1995.
  • Schutz, H., W. Seiler, R. Conrad, Processes involved in formation and emission of methane in rice paddies, Biogeochemistry, 27, 3560, 1989.
  • Severinghaus, J. P., E. J. Brook, Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice, Science, 2865441, 930934, 1999.
  • Severinghaus, J. P., T. Sowers, E. J. Brook, R. B. Alley, M. L. Bender, Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice, Nature, 391, 141146, 1998.
  • Shannon, R. D., J. R. White, A three-year study of controls on methane emissions from two Michigan peatlands, Biogeochemistry, 27, 3560, 1994.
  • Shannon, R. D., J. R. White, J. E. Lawson, B. S. Gilmour, Methane efflux from emergent vegetation in peatlands, J. Ecol., 842, 239246, 1996.
  • Slatyer, R. O., I. C. McIlroy, Practical Micrometeorology, UNESCO, Paris, France, 1961.
  • Stendel, M., K. Arpe, Evaluation of the hydrological cycle in reanalyses and observationsRep. 228, 52Max-Planck-Inst. für Meteorol., Hamburg, Germany, 1997.
  • Svensson, B. H., T. R. Christensen, E. Johansson, M. Öquist, Interdecadal variations in CO2 and CH4 exchange of a subarctic mire—Stordalen revisited after 20 years, Oikos, 85, 2230, 1999.
  • Tathy, J.-P., B. Cros, R. A. Delmas, A. Marenco, J. Servant, M. Labat, Methane emission from flooded forest in Central Africa, J. Geophys. Res., 97, 61596168, 1992.
  • Valentine, D. W., E. A. Holland, D. S. Schimel, Ecosystem and physiological controls over methane production in northern wetlands, J. Geophys. Res., 99, 15631571, 1994.
  • Veihmeyer, F. J., A. H. Hendrickson, The moisture equivalent as a measure of the field capacity of soils, Soil Sci., 32, 181193, 1931.
  • Walter, B. P., M. Heimann, R. D. Shannon, J. R. White, A process-based model to derive methane emissions from natural wetlands, Geophys. Res. Lett., 2325, 37313734, 1996.
  • Walter, B. P., Development of a process-based model to derive methane emissions from natural wetlands for climate studies, dissertation,Max-Planck-Inst. für Meteorol.,Hamburg, Germany,1998.
  • Walter, B. P., M. Heimann, A process-based, climate-sensitive model to derive methane emissions from natural wetlands: Application to five wetland sites, sensitivity to model parameters, and climate, Global Biogeochem. Cycles, 143, 745765, 2000.
  • Walter, B. P., M. Heimann, andE. Matthews, Modeling modern methane emissions from natural wetlands, 2, Interannual variations 1982–1993,J. Geophys. Res., 106(D24), 2001.
  • Whalen, S. C., W. S. Reeburgh, Interannual variations in tundra methane emissions: A four-year time series at fixed sites, Global Biogeochem. Cycles, 6, 139159, 1992.
  • Wilson, M. F., A. Henderson-Sellers, A global archive of land cover and soils data for use in general circulation models, J. Climatol., 5, 119143, 1985.
  • Zobler, L., A world soil file for global climate modelingTech. Mem. 87802NASA, 1986.