SEARCH

SEARCH BY CITATION

References

  • Arthur, M. A., and J. H. Natland, Carbonaceous sediments in the North and South Atlantic: The role of salinity in stable stratification of Early Cretaceous basins, in Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment, Maurice Ewing Ser., vol. 3, edited by M. Talwani et al., pp. 375401, AGU, Washington, D. C., 1979.
  • Arthur, M. A., and I. Premoli Silva, Development of widespread organic carbon-rich strata in the Mediterranean Tethys, in Nature of Cretaceous Carbon-Rich Facies, edited by S. O. Schlanger, and M. B. Cita, pp. 754, Academic, San Diego, Calif., 1982.
  • Arthur, M. A., and B. B. Sageman, Marine black shales: Depositional mechanisms and environments of ancient deposits, Annu. Rev. Earth Planet. Sci., 22, 499551, 1994.
  • Arthur, M. A., and S. O. Schlanger, Cretaceous “oceanic anoxic events” as causal factors in development of reef-reservoired giant oil fields, AAPG Bull., 63, 870885, 1979.
  • Arthur, M. A., W. E. Dean, D. J. Bottjer, and P. A. Scholle, Rhythmic bedding in Mesozoic-Cenozoic pelagic carbonate sequences: The primary and diagenetic origin of Milankovitch-like cycles, in Milankovitch and Climate, edited by A. Berger, pp. 191222, D. Riedel, Norwell, Mass., 1984.
  • Arthur, M. A., W. E. Dean, and S. O. Schlanger, Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric CO2, in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophys. Monogr. Ser., vol. 32, edited by E. T. Sundquist, and W. S. Broecker, pp. 504529, AGU, Washington, D. C., 1985.
  • Arthur, M. A., S. O. Schlanger, and H. C. Jenkyns, The Cenomanian-Turonian oceanic anoxic event II, paleoceanographic controls on organic matter production and preservation, in Marine Petroleum Source Rocks, edited by J. Brooks, and A. Fleet, pp. 399418, Geol. Soc. Spec. Publ., 24, 1987.
  • Arthur, M. A., W. E. Dean, and L. M. Pratt, Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary, Nature, 335, 714717, 1988.
  • Arthur, M. A., H.-J. Brumsack, H. C. Jenkyns, and S. O. Schlanger, Stratigraphy, geochemistry, and paleoceanography of organic carbon-rich Cretaceous sequences, in Cretaceous Resources, Events, and Rhythms, edited by R. N. Ginsburg, and B. Beaudoin, pp. 75119, Kluwer Acad., Norwell, Mass., 1990.
  • Azam, F., Microbial control of oceanic carbon flux: The plot thickens, Science, 280, 694695, 1998.
  • Azam, F., and R. A. Long, Sea snow microcosms, Nature, 414, 495498, 2001.
  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, R. A. Meyer-Reil, and F. Thingstad, The ecological role of water column microbes in the sea, Mar. Ecol. Prog. Ser., 10, 257263, 1983.
  • Baker, E. T., C. R. German, and H. Elderfield, Hydrothermal plumes over spreading center axes: Global distributions and geophysical inferences, in Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, Geophys. Monogr. Ser., vol. 91, edited by S. Humphries et al., pp. 4771, AGU, Washington, D. C., 1995.
  • Banner, F. T., and D. Desai, A review and revision of the Jurassic-Early Cretaceous Globigerinina with special reference to the Aptian assemblages of Speeton (North Yorkshire, England), J. Micropaleontol., 7, 143185, 1988.
  • Barron, E. J., A warm, equable Cretaceous: The nature of the problem, Earth Sci. Rev., 19, 305338, 1983.
  • Barron, E. J., Global Cretaceous paleogeography—International Geologic Correlation Project 191, Palaeogeogr. Palaeoclimatol. Palaeoecol., 59, 207216, 1987.
  • Barron, E. J., and W. H. Peterson, Mid-Cretaceous ocean circulation: Results from model sensitivity studies, Paleoceanography, 5, 319337, 1990.
  • Barron, E. J., and W. M. Washington, Warm Cretaceous climates: High atmospheric CO2 as a plausible mechanism, in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophys. Monogr. Ser., vol. 32, edited by E. T. Sundquist, and W. S. Broecker, pp. 546553, AGU, Washington, D. C., 1985.
  • Barron, E. J., P. J. Fawcett, W. H. Peterson, D. Pollard, and S. L. Thompson, A “simulation” of mid-Cretaceous climate, Paleoceanography, 10, 953962, 1995.
  • Barron, E. J., W. W. Hay, and S. Thompson, The hydrologic cycle: A major variable during Earth history, Palaeogeogr. Palaeoclimatol. Palaeoecol., 75, 157174, 1989.
  • Barron, E. J., W. H. Peterson, S. L. Thompson, and D. Pollard, Past climate and the role of ocean heat transport: Model simulations for the Cretaceous, Paleoceanography, 8, 785798, 1993.
  • Behrenfeld, M. J., and Z. S. Kolber, Widespread iron limitation of phytoplankton in the South Pacific Ocean, Science, 283, 840843, 1999.
  • Berger, W. H., and L. Diester-Haas, Paleoproductivity: The benthic/planktonic ratio in foraminifera as a productivity index, Mar. Geol., 81, 1525, 1988.
  • Berger, W. H., J. S. Killingley, and E. Vincent, Stable isotopes in deep-sea carbonates: Box core ERDC-92, west equatorial Pacific, Oceanol. Acta, 1, 203216, 1978.
  • Bopp, L., P. Monfray, O. Aumont, J.-L. Dufresne, H. Le Treut, G. Madec, L. Terray, and J. C. Orr, Potential impact of climate change on marine export production, Global Biogeochem. Cycles, 15, 8199, 2001.
  • BouDagher-Fadel, M. K., F. T. Banner, and J. E. Whittaker, The Early Evolutionary History of Planktonic Foraminifera, 269 pp., Chapman and Hall, New York, 1997.
  • Bralower, T. J., Calcareous nannofossil biostratigraphy and assemblages of the Cenomanian-Turonian boundary interval: Implications for the origin and timing of oceanic anoxia, Paleoceanography, 3, 275316, 1988.
  • Bralower, T. J., and J. A. Bergen, Cenomanian-Santonian calcareous nannofossil biostratigraphy of a transect of cores drilled across the Western Interior Seaway, in Stratigraphy and Paleoenvironments of the Cretaceous Western Interior Seaway, USA, Concepts in Sedimentol. Paleontol., vol. 6, edited by W. E. Dean, and M. A. Arthur, pp. 5977, Soc. Sediment. Geol., Tulsa, Okla., 1998.
  • Bralower, T. J., and W. G. Siesser, Cretaceous calcareous nannofossil stratigraphy of ODP Sites 761, 762, and 763, Exmouth and Wombat Plateaus, N.W, Australia, Proc. Ocean Drill. Program Sci. Results, 122, 529566, 1992.
  • Bralower, T. J., W. V. Sliter, M. A. Arthur, R. M. Leckie, D. Allard, and S. O. Schlanger, Dysoxic/anoxic episodes in the Aptian-Albian (Early Cretaceous), in The Mesozoic Pacific: Geology, Tectonics and Volcanism, Geophys. Monogr. Ser., vol. 77, edited by M. S. Pringle et al., pp. 537, AGU, Washington, D. C., 1993.
  • Bralower, T. J., M. A. Arthur, R. M. Leckie, W. V. Sliter, D. Allard, and S. O. Schlanger, Timing and paleoceanography of oceanic dysoxia/anoxia in the late Barremian to early Aptian, Palaios, 9, 335369, 1994.
  • Bralower, T. J., R. M. Leckie, W. V. Sliter, and H. R. Thierstein, An integrated Cretaceous microfossil biostratigraphy, in Geochronology, Time Scales, and Global Stratigraphic Correlation, edited by W. A. Berggren et al., 6579, Spec. Publ. SEPM Soc. Sedment. Geol., 54, 1995.
  • Bralower, T. J., P. D. Fullagar, C. K. Paull, G. S. Dwyer, and R. M. Leckie, Mid-Cretaceous strontium-isotope stratigraphy of deep-sea sections, Geol. Soc. Am. Bull., 109, 14211442, 1997.
  • Bralower, T. J., E. CoBabe, B. Clement, W. V. Sliter, C. L. Osburn, and J. Longoria, The record of global change in mid-Cretaceous (Barremian-Albian) sections from the Sierra Madre, northeastern Mexico, J. Foraminiferal Res., 29, 418437, 1999.
  • Brasier, M. D., Fossil indicators of nutrient levels, 1, Eutrophication and climate change, in Marine Palaeoenvironmental Analysis from Fossils, edited by D. W. Bosence, and P. A. Allison, London, Geol. Soc. Spec. Publ.,83, 113132, 1995.
  • Brass, G. W., J. P. Southam, and W. H. Peterson, Warm saline bottom water in the ancient ocean, Nature, 269, 620623, 1982.
  • Bréhéret, J.-G., Glauconitization episodes in marginal settings as echoes of mid-Cretaceous anoxic events in the Vocontian basin (SE France), Modern and Ancient Continental Shelf Anoxia, edited by R. V. Tyson, and T. H. Peterson, Geol. Soc. Spec. Publ.,58, 415425, 1991.
  • Bréhéret, J.-G., The mid-Cretaceous organic-rich sediments from the Vocontian zone of the French Southeast Basin, in Hydrocarbon and Petroleum Geology of France, edited by A. Mascle, pp. 295320, Springer-Verlag, New York, 1994.
  • Bréhéret, J.-G., and M. Delamette, Faunal fluctuations related to oceanographical changes in the Vocontian basin (SE France) during Aptian-Albian time, Geobios Mem. Spec., 11, 267277, 1989.
  • Bréhéret, J.-G., M. Caron, and M. Delamette, Niveaux riches en matière organique dans l'Albien vocontien; quelques caractères du paléoenvironnement essai d'interprétation génétique, in Les Couches Riches en Matière Organique et leurs Conditions de Dépôt, edited by J.-G. Bréhéret, Documents B.R.G.M., 110, 141191, 1986.
  • Bujak, J. P., and G. L. Williams, Dinoflagellate diversity through time, Mar. Micropaleontol., 4, 112, 1979.
  • Capone, D. G., J. P. Zehr, H. W. Paerl, B. Bergman, and E. J. Carpenter, Trichodesmium, a globally significant marine cyanobacterium, Science, 276, 12211229, 1997.
  • Caron, M., Cretaceous planktonic foraminifera, in Plankton Stratigraphy, edited by H. M. Bolli et al., pp. 1786, Cambridge Univ. Press, New York, 1985.
  • Caron, M., and P. Homewood, Evolution of early planktonic foraminifers, Mar. Micropaleontol., 7, 453462, 1983.
  • Caron, M., F. Robaszynski, F. Amedro, F. Baudin, J.-F. Deconinck, P. Hochuli, K. Salis-Perch Nielsen, and N. Tribovillard, Estimation de la durée de l'événement anoxique global au passage Cénomanien/Turonien. Approche cyclostratigraphique dans la formation Bahloul en Tunisie centrale, Bull. Soc. Geol. Fr., 170, 145160, 1999.
  • Chamberlin, T. C., On a possible reversal of deep sea circulation and its influence on geologic climate, J. Geol., 14, 363373, 1906.
  • Cho, B. C., and F. Azam, Major role of bacteria in biogeochemical fluxes in the ocean's interior, Nature, 332, 441443, 1988.
  • Clarke, L. J., and H. C. Jenkyns, New oxygen isotope evidence for long-term Cretaceous climatic change in the Southern Hemisphere, Geology, 27, 699702, 1999.
  • Coale, K. H., S. E. Fitzwatere, R. M. Gordon, K. S. Johnson, and R. T. Barber, Control of community growth and export production by upwelled iron in the equatorial Pacific Ocean, Nature, 379, 621624, 1996a.
  • Coale, K. H., et al., A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean, Nature, 383, 495501, 1996b.
  • Coccioni, R., and S. Galeotti, Orbitally induced cycles in benthonic foraminiferal morphogroups and trophic structure distribution patterns from the late Albian “Amadeus Segment” (central Italy), J. Micropaleontol., 12, 227239, 1993.
  • Coccioni, R., and I. Premoli Silva, Planktonic foraminifera from the Lower Cretaceous of Rio Argos sections (southern Spain) and biostratigraphic implications, Cretaceous Res., 15, 645687, 1994.
  • Coccioni, R., E. Erba, and I. Premoli Silva, Barremian-Aptian calcareous plankton biostratigraphy from Gorgo Cerbara section (Marche, central Italy) and implications for plankton evolution, Cretaceous Res., 13, 517537, 1992.
  • Codispoti, L. A., Phosphorous vs. nitrogen limitation of new and export production, in Productivity of the Ocean: Present and Past, edited by W. H. Berger et al., pp. 377394, John Wiley, 1989.
  • Codispoti, L. A., The limits to growth, Nature, 387, 237238, 1997.
  • Coffin, M. F., and O. Eldholm, Large igneous provinces: Crustal structure, dimensions, and external consequences, Rev. Geophys., 32, 136, 1994.
  • Cool, T. E., Sedimentological evidence concerning the paleoceanography of the Cretaceous western North Atlantic Ocean, Palaeogeogr. Palaeoclimatol. Palaeoecol., 39, 135, 1982.
  • Corfield, R. M., M. A. Hall, and M. D. Brasier, Stable isotope evidence for foraminiferal habitats during the development of the Cenomanian-Turonian oceanic anoxic event, Geology, 18, 175178, 1990.
  • Cotillon, P., and M. Rio, Cyclic sedimentation in the Cretaceous of Deep Sea Drilling Project Sites 535 and 540 (Gulf of Mexico), 534 (Central Atlantic), and in the Vocontian Basin (France), Initial Rep. Deep Sea Drill. Proj., 77, 334377, 1984.
  • Crane, P. R., E. M. Friis, and K. R. Pedersen, The origin and early diversification of angiosperms, Nature, 374, 2733, 1995.
  • Dean, W. E., J. V. Gardner, L. F. Jansa, P. Cepek, and D. Seibold, Cyclic sedimentation along the continental margin of northwest Africa, Initial Rep. Deep Sea Drill. Proj., 41, 965989, 1978.
  • de Boer, P. L., Cyclicity and storage of organic matter in middle Cretaceous pelagic sediments, in Cyclic and Event Stratification, edited by G. Einsele, and A. Seilacher, pp. 456475, Springer-Verlag, New York, 1982.
  • de Boer, P. L., and A. A. H. Wonders, Astronomically induced thythmic bedding, in Milankovitch and Climate, part 1, edited by A. L. Berger et al., pp. 177190, D. Riedel, Norwell, Mass., 1984.
  • de Graciansky, P. C., et al., Les formations d’âge Crétacé de l’Atlantique Nord et leur metière organique: Paleogéographie et milieux de depot, Rev. Inst. Fr. Petrole, 37, 275337, 1982.
  • D'Hondt, S., and M. A. Arthur, Interspecific variation in stable isotope signals of Maastrichtian planktonic foraminifera, Paleoceanography, 10, 123135, 1995.
  • Deuser, W. G., E. H. Ross, C. Hemleben, and M. Spindler, Seasonal changes in species composition, number, mass, size, and isotopic composition of planktonic foraminifera settling into the deep Sargasso Sea, Palaeogeogr. Palaeoclimatol. Palaecol., 33, 103127, 1981.
  • Eicher, D. L., Cenomanian and Turonian planktonic foraminifera from the western interior of the United States, in Proceedings of the First International Conference on Planktonic Microfossils, vol. 2, edited by P. Brönnimann, and H. H. Renz, pp. 163174, E. J. Brill, Cologne, Germany, 1969.
  • Erba, E., Calcareous nannofossil distribution in pelagic rhythmic sediments (Aptian-Albian Piobbico core, central Italy), Riv. Ital. Paleontol. Strat., 97, 455484, 1992.
  • Erba, E., Nannofossils and superplumes: The early Aptian “nannoconid crisis”, Paleoceanography, 9, 483501, 1994.
  • Erba, E., I. Premoli Silva, and D. K. Watkins, Cretaceous calcareous plankton stratigraphy of Sites 872 through 879, Proc. Ocean Drill. Program Sci. Results, 144, 157169, 1996.
  • Erba, E., J. E. T. Channell, M. Claps, C. Jones, R. Larson, B. Opdyke, I. Premoli Silva, A. Riva, G. Salvini, and S. Torricelli, Integrated stratigraphy of the Cismon Apticore (southern Alps, Italy): A “reference section” for the Barremian-Aptian interval at low latitudes, J. Foramaminiferal Res., 29, 371391, 1999.
  • Erbacher, J., and J. Thurow, Influence of oceanic anoxic events on the evolution of mid-Cretaceous radiolaria in the North Atlantic and western Tethys, Mar. Micropaleontol., 30, 139158, 1997.
  • Erbacher, J., J. Thurow, and R. Littke, Evolution patterns of radiolaria and organic matter variations: A new approach to identify sea level changes in mid-Cretaceous pelagic environments, Geology, 24, 499502, 1996.
  • Erbacher, J., W. Gerth, G. Schmiedl, and C. Hemleben, Benthic foraminiferal assemblages of late Aptian-early Albian black shale intervals in the Vocontian Basin, SE France, Cretaceous Res., 19, 805826, 1998.
  • Erbacher, J., C. Hemleben, B. T. Huber, and M. Markey, Correlating environmental changes during early Albian oceanic anoxic event 1B using benthic foraminiferal paleoecology, Mar. Micropaleontol., 38, 728, 1999.
  • Erbacher, J., B. T. Huber, R. D. Norris, and M. Markey, Increased thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous period, Nature, 409, 325327, 2001.
  • Erez, J., and B. Luz, Experimental paleotemperature equation for planktonic foraminifera, Geochim. Cosmochim. Acta, 47, 10251031, 1983.
  • Fairbanks, R. G., and P. H. Wiebe, Foraminifera and chlorophyll maximum: Vertical distribution, seasonal succession, and paleoceanographic significance, Science, 209, 15241526, 1980.
  • Fairbanks, R. G., M. Sverdlove, R. Free, P. H. Wiebe, and A. W. Bé, Vertical distribution and isotopic fractionation of living planktonic foraminifera from the Panama Basin, Nature, 298, 841844, 1982.
  • Falkowski, P. G., Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean, Nature, 387, 272275, 1997.
  • Falkowski, P. G., D. Ziemann, Z. Kolber, and P. K. Bienfang, Role of eddy pumping in enhancing primary productivity in the ocean, Nature, 353, 5558, 1991.
  • Falkowski, P. G., R. T. Barber, and V. Smetacek, Biochemical controls and feedbacks on ocean primary productivity, Science, 281, 200206, 1998.
  • Fassell, M. L., and T. J. Bralower, Warm, equable mid-Cretaceous: Stable isotope evidence, in Evolution of the Cretaceous Ocean-Climate System, edited by E. Barrera, and C. C. Johnson, Spec. Pap. Geol. Soc. Am., 332, 121142, 1999.
  • Fenchel, T., Marine bugs and carbon flow, Science, 292, 24442445, 2001.
  • Ferguson, K. M., R. T. Gregory, and A. Constantine, Lower Cretaceous (Aptian-Albian) secular changes in the oxygen and carbon isotope record from high paleolatitude, fluvial sediments, southeast Australia: Comparisons to the marine record, in Evolution of the Cretaceous Ocean-Climate System, edited by E. Barrera, and C. C. Johnson, Spec. Pap. Geol. Soc. Am., 332, 5972, 1999.
  • Fischer, A. G., Climate rhythms recorded in strata, Annu. Rev. Earth Planet. Sci, 14, 351376, 1986.
  • Fischer, A. G., and M. A. Arthur, Secular variations in the pelagic realm, in Deepwater Carbonate Environments, edited by H. E. Cook, and P. Enos, Spec. Publ. Soc. Econ. Paleontol. Mineral., 25, 1950, 1977.
  • Föllmi, K. B., H. Weissert, M. Bisping, and H. Funk, Phosphogenesis, carbon-isotope stratigraphy, and carbonate platform evolution along the Lower Cretaceous northern Tethyan margin, AAPG Bull., 106, 729746, 1994.
  • Frakes, L. A., Estimating the global thermal state from Cretaceous sea surface and continental temperature data, in Evolution of the Cretaceous Ocean-Climate System, edited by E. Barrera, and C. C. Johnson, Spec. Pap. Geol. Soc. Am., 332, 4957, 1999.
  • Frakes, L. A., and J. E. Francis, A guide to Phanerozoic cold polar climates from high-latitude ice-rafting in the Cretaceous, Nature, 333, 547549, 1988.
  • Frakes, L. A., J. E. Francis, and J. I. Syktus, Climate Modes of the Phanerozoic, 274 pp., Cambridge Univ. Press, New York, 1992.
  • Frey, F., M. Coffin, and P. J. Wallace, Origin and evolution of a submarine large igneous province: The Kerguelen Plateau and Broken Ridge, southern Indian Ocean (abstract), Eos Trans AGU, 80(46), F1103, Fall Meet. Suppl., 1999.
  • Froelich, P. N., M. L. Bender, N. A. Luedtke, G. R. Heath, and T. DeVries, The marine phosphorous cycle, Am. J. Sci., 282, 474511, 1982.
  • Frost, B. W., Phytoplankton bloom on iron rations, Nature, 383, 475476, 1996.
  • Frush, M. P., and D. L. Eicher, Cenomanian and Turonian foraminifera and paleoenvironments in the Big Bend region of Texas and Mexico, in The Cretaceous System in the Western Interior of North America, edited by W. G. E. Caldwell et al., Geol. Assoc. Can. Spec. Pap., 13, 277301, 1975.
  • Gale, A. S., H. C. Jenkyns, W. J. Kennedy, and R. M. Corfield, Chemostratigraphy versus biostratigraphy: Data from around the Cenomanian-Turonian boundary, J. Geol. Soc. London, 150, 2932, 1993.
  • Gale, A. S., A. B. Smith, N. E. A. Monks, J. A. Young, A. Howard, D. S. Wray, and J. M. Huggett, Marine biodiversity through the late Cenomanian-early Turonian: Palaeoceanographic controls and sequence stratigraphic biases, J. Geol. Soc. London, 157, 745757, 2000.
  • Gasperi, J. T., and J. P. Kennett, Isotopic evidence for depth stratification and paleoecology of Miocene planktonic foraminifera: Western equatorial Pacific DSDP Site 289, in Pacific Neogene-Environment, Evolution, and Events, edited by R. Tsuchi, and J. C. Ingle, pp. 117147, Univ. of Tokyo Press, Tokyo, 1992.
  • Gersonde, R., and D. M. Harwood, Lower Cretaceous diatoms from ODP Leg 113 Site 693 (Weddell Sea), part 1, Vegetative cells, Proc. Ocean Drill. Program Sci. Results, 113, 365402, 1990.
  • Glover, H. E., B. B. Prezelin, L. Campbell, M. Wyman, and C. Garside, A nitrate-dependent Synechococcus bloom in surface Sargasso Sea water, Nature, 331, 161163, 1988.
  • Goldstein, S. T., Foraminifera: A biological overview, in Modern Foraminifera, edited by B. K. Sen Gupta, pp. 3755, Kluwer Acad., Norwell, Mass., 1999.
  • Gradstein, F. M., Biostratigraphy of Lower Cretaceous Blake Nose and Blake-Bahama Basin foraminifers, DSDP Leg 44, western North Atlantic Ocean, Initial Rep. Deep Sea Drill. Proj., 44, 663701, 1978.
  • Gradstein, F. M., F. P. Agterberg, J. G. Ogg, J. Hardenbol, P. van Veen, J. Thierry, and Z. Huang, A Mesozoic time scale, J. Geophys. Res., 99, 24,05124,074, 1994.
  • Gröcke, D. R., S. P. Hesselbo, and H. C. Jenkyns, Carbon-isotope composition of lower Cretaceous fossil wood: Ocean-atmosphere chemistry and relation to sea-level change, Geology, 27, 155158, 1999.
  • Haig, D. W., and D. A. Lynch, A late early Albian marine transgressive pulse over northeastern Australia, precursor to epeiric basin anoxia: Foraminiferal evidence, Mar. Micropaleontol., 22, 311362, 1993.
  • Hallam, A., and M. J. Bradshaw, Bituminous shales and oolitic ironstones as indicators of transgressions and regressions, J. Geol. Soc. London, 136, 157164, 1979.
  • Haq, B. U., Transgressions, climatic change, and the diversity of calcareous nannoplankton, Mar. Geol., 15, 2530, 1973.
  • Haq, B. U., J. Hardenbol, and P. R. Vail, Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change, in Sea-Level Changes: An Integrated Approach, edited by C. K. Wilgus et al., Spec. Publ. Soc. Econ. Paleontol. Mineral., 42, 71108, 1988.
  • Hardie, L. A., Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. Geology, 24, 279283, 1996.
  • Hart, M. B., A water depth model for the evolution of the planktonic Foraminiferida, Nature, 286, 252254, 1980.
  • Hart, M. B., and K. C. Ball, Late Cretaceous anoxic events, sea-level changes, and the evolution of the planktonic foraminifera, in North Atlantic Paleoceanography, edited by C. P. Summerhayes, and N. J. Shackleton, Geol. Soc Spec. Publ., 21, 6778, 1986.
  • Harwood, D. M., and R. Gersonde, Lower Cretaceous diatoms from ODP Leg 113 Site 693 (Weddell Sea), part 2, Resting spores, Chrysophycean cysts, and endoskeletal dinoflagellates, and notes on the origin of diatoms, Proc. Ocean Drill. Program Sci. Results, 113, 403426, 1990.
  • Harwood, D. M., and V. A. Nikolaev, Cretaceous diatoms: Morphology, taxonomy, biostratigraphy, in Siliceous Microfossils, Short Courses in Paleontol., vol. 8, edited by C. D. Blome et al., pp. 81106, Paleontol. Soc., Knoxville, Tenn., 1995.
  • Hay, W. W., Cretaceous paleoceanography, Geol. Carpathica, 46, 257266, 1995.
  • Hay, W. W., and R. M. DeConto, Comparison of modern and Late Cretaceous meridional energy transport and oceanology, in Evolution of the Cretaceous Ocean-Climate System, edited by E. Barrera, and C. C. Johnson, Spec. Pap. Geol. Soc. Am., 332, 283300, 1999.
  • Hays, J. D., and W. C. Pitman III, Lithospheric plate motion, sea level changes and climatic and ecological consequences, Nature, 246, 1822, 1973.
  • Hemleben, C., M. Spindler, and O. R. Anderson, Modern Planktonic Foraminifera, Springer-Verlag, New York, 1989.
  • Herbert, T. D., and A. G. Fischer, Milankovitch climate origin of mid-Cretaceous black shale rhythms, central Italy, Nature, 321, 739743, 1986.
  • Herbert, T. D., R. F. Stallard, and A. G. Fischer, Anoxic events, productivity rhythms, and the orbital signature in a mid-Cretaceous deep sea sequence from central Italy, Paleoceanography, 1, 495506, 1986.
  • Herguera, J. C., and W. H. Berger, Paleoproductivity from benthic foraminifera abundance: Glacial to postglacial change in the west-equatorial Pacific, Geology, 19, 11731176, 1991.
  • Hickey, L. J., and J. A. Doyle, Early Cretaceous fossil evidence for angiosperm evolution, Bot. Rev., 43, 3104, 1977.
  • Hilbrecht, H., H.-W. Hubberten, and H. Öberhänsli, Biogeography of planktonic foraminifera and regional carbon isotope variations: Productivity and water masses in Late Cretaceous Europe, Palaeogeogr. Palaeoclimatol. Palaeoecol., 92, 407421, 1992.
  • Hinz, K., et al., Initial Reports of the Deep Sea Drilling Project, vol. 79, U.S. Govt. Printing Off., Washington, D.C., 1984.
  • Hochuli, P., A. P. Menegatti, H. Weissert, E. Erba, and I. Premoli Silva, High-productivity and cooling episodes in the early Aptian Alpine Tethys, Geology, 27, 657660, 1999.
  • Holbourn, A., and W. Kuhnt, No extinctions during oceanic anoxic event 1b: The Aptian-Albian benthic foraminiferal record of ODP Leg 171, in Western North Atlantic Palaeogene and Cretaceous Palaeoceanography, edited by D. Kroon, R. D. Norris, and A. Klaus, Geol. Soc. Spec. Publ., 183, 7392, 2001.
  • Huber, B. T., D. A. Hodell, and C. P. Hamilton, Middle-Late Cretaceous climate of the southern high latitudes: Stable isotopic evidence for minimal equator-to-pole thermal gradients, Geol. Soc. Am. Bull., 107, 11641191, 1995.
  • Huber, B. T., R. M. Leckie, R. D. Norris, T. J. Bralower, and E. CoBabe, Foraminiferal assemblage and stable isotopic change across the Cenomanian-Turonian boundary in the subtropical North Atlantic, J. Foraminiferal Res., 29, 392417, 1999.
  • Huber, B. T., R. D. Norris, and K. G. MacLeod, Deep-sea paleotemperature record of extreme warmth during the Cretaceous, Geology, 30, 123126, 2002.
  • Ingram, B. L., R. Coccioni, A. Montanari, and F. M. Richter, Strontium isotopic composition of mid-Cretaceous seawater, Science, 264, 546550, 1994.
  • Jahren, A. H., and N. C. Arens, Methane hydrate dissociation implicated in Aptian OAE events, Geol. Soc. Am. Abstr. Programs, 30, 52, 1998.
  • Jahren, A. H., N. C. Arens, G. Sarmiento, J. Guerrero, and R. Amundson, Terrestrial record of methane hydrate dissociation in the Early Cretaceous, Geology, 29, 159162, 2001.
  • Jarvis, I., G. A. Carson, M. K. E. Cooper, M. B. Hart, P. N. Leary, B. A. Tocher, D. Horne, and A. Rosenfeld, Microfossil assemblages and the Cenomanian-Turonian (Late Cretaceous) oceanic anoxic event, Cretaceous Res., 9, 3103, 1988.
  • Jenkyns, H. C., Cretaceous anoxic events: From continents to oceans, J. Geol. Soc. London, 137, 171188, 1980.
  • Jenkyns, H. C., Carbon-isotope stratigraphy and paleoceanographic significance of the lower Cretaceous shallow-water carbonates of Resolution Guyot, Mid-Pacific Mountains, Proc. Ocean Drill. Program Sci. Results, 143, 99108, 1995.
  • Jenkyns, H. C., A. S. Gale, and R. M. Corfield, Carbon and oxygen-isotope stratigraphy of the English chalk and Italian scaglia and its paleoclimatic significance, Geol. Mag., 131, 134, 1994.
  • Johnson, C. C., E. J. Barron, E. G. Kauffman, M. A. Arthur, P. J. Fawcett, and M. K. Yasuda, Middle Cretaceous reef collapse linked to ocean heat transport, Geology, 24, 376380, 1996.
  • Jones, C. E., and H. C. Jenkyns, Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous, Am. J. Sci., 301, 112149, 2001.
  • Jones, C. E., H. C. Jenkyns, A. L. Coe, and S. P. Hesselbo, Strontium isotopic variations in Jurassic and Cretaceous seawater, Geochim. Cosmochim. Acta, 58, 30613074, 1994.
  • Jumars, P. A., Concepts in Biological Oceanography, An Interdisciplinary Primer, 348 pp., Oxford Univ. Press, New York, 1993.
  • Kaiho, K., Phylogeny of deep-sea calcareous trochospiral benthic foraminifera: Evolution and diversification, Micropaleontology, 44, 291311, 1998.
  • Kaiho, K., Evolution in the test size of deep-sea benthic foraminifera during the past 120 m.y. Mar. Micropaleontol., 37, 5365, 1999.
  • Kaiho, K., and T. Hasegawa, End-Cenomanian benthic foraminiferal extinctions and dysoxic events in the northwestern Pacific Ocean margin, Palaeogeogr. Palaeoclimatol. Palaeoecol., 111, 2943, 1994.
  • Kaiho, K., O. Fujiwara, and I. Motoyama, Mid-Cretaceous faunal turnover of intermediate-water benthic foraminifera in the northwestern Pacific Ocean margin, Mar. Micropaleontol., 23, 1349, 1993.
  • Kauffman, E. G., Paleobiogeography and evolutionary response dynamic in the Cretaceous Western Interior Seaway of North America, in Jurassic-Cretaceous Biochronology and Paleogeography of North America, edited by G. E. G. Westermann, Geol. Assoc. Can. Spec. Pap., 27, 273306, 1984.
  • Kaufmann, E. G., and W. G. E. Caldwell, The western interior basin in space and time, in Evolution of the Western Interior Basin, edited by W. G. E. Caldwell, and E. G. Kauffman, Geol. Assoc. Can Spec. Pap., 39, 130, 1993.
  • Kennett, J. P., and L. D. Stott, Abrupt deep-sea warming, paleoceanographic changes and benthic extinction at the end of the Paleocene, Nature, 353, 225229, 1991.
  • Kerr, A. C., Oceanic plateau formation: A cause of mass extinction and black shale deposition around the Cenomanian-Turonian boundary, J. Geol. Soc. London, 155, 619626, 1998.
  • Kirchman, D. L., Microbial ferrous wheel, Nature, 383, 303304, 1996.
  • Kolber, Z. S., F. G. Plumley, A. S. Lang, J. T. Beatty, R. E. Blankenship, C. L. VanDover, C. Vetriani, M. Koblizek, C. Rathgeber, and P. G. Falkowski, Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean, Science, 292, 24922495, 2001.
  • Kominz, M. A., Oceanic ridge volumes and sealevel change—An error analysis, in Interregional Unconformities and Hydrocarbon Accumulation, edited by J. S. Schlee, AAPG Mem., 36, 109127, 1984.
  • Kuypers, M. M. M., R. D. Pancost, and J. S. Sinninghe Damsté, A large and abrupt fall in atmospheric CO2 concentration during Cretaceous times, Nature, 399, 342345, 1999.
  • Kuypers, M. M. M., P. Blokker, J. Erbacher, H. Kinkel, R. D. Pancost, S. Schouten, and J. S. Sinninghe Damsté, Massive expansion of marine Archaea during a mid-Cretaceous oceanic anoxic event, Science, 293, 9294, 2001.
  • Larson, R. L., Geological consequences of superplumes, Geology, 19, 963966, 1991a.
  • Larson, R. L., Latest pulse of Earth: Evidence for a mid-Cretaceous superplume, Geology, 19, 547550, 1991b.
  • Larson, R. L., Superplumes and ridge interactions between Ontong Java and Manihiki Plateaus and the Nova-Canton Trough, Geol., 25, 779782, 1997.
  • Larson, R. L., and E. Erba, Onset of the mid-Cretaceous greenhouse in the Barremian-Aptian: Igneous events and the biological, sedimentary, and geochemical responses, Paleoceanography, 14, 663678, 1999.
  • Larson, R. L., and C. Kincaid, Onset of mid-Cretaceous volcanism by elevation of the 670 km thermal boundary layer, Geology, 24, 551554, 1996.
  • Larson, R. L., and W. C. Pitman III, World-wide correlation of Mesozoic magnetic anomalies, and its implications, Geol. Soc. Am. Bull., 83, 36453662, 1972.
  • Laybourn-Parry, J., Protozoan Plankton Ecology, 231 pp., Chapman and Hall, New York, 1992.
  • Leckie, R. M., Mid-Cretaceous planktonic foraminiferal biostratigraphy off central Morocco, Deep Sea Drilling Project Leg 79, Sites 545 and 547, Initial Rep. Deep Sea Drilling Proj., 79, 579620, 1984.
  • Leckie, R. M., Foraminifera of the Cenomanian-Turonian boundary interval, Greenhorn Formation, Rock Canyon Anticline, Pueblo, Colorado, in Fine-Grained Deposits and Biofacies of the Cretaceous Western Interior Seaway: Evidence of Cyclic Sedimentary Processes, Field Trip Guidebk., vol. 4, edited by L. M. Pratt et al., pp. 139149, Soc. Econ. Paleontol. Mineral., Tulsa, Okla., 1985.
  • Leckie, R. M., Paleoecology of mid-Cretaceous planktonic foraminifera: A comparison of open ocean and epicontinental sea assemblages, Micropaleontology, 33, 164176, 1987.
  • Leckie, R. M., An oceanographic model for the early evolutionary history of planktonic foraminifera, Palaeogeogr. Palaeoclimatol. Palaeoecol., 73, 107138, 1989.
  • Leckie, R. M., R. F. Yuretich, O. L. O. West, D. Finkelstein, and M. Schmidt, Paleoceanography of the southwestern Western Interior Sea during the time of the Cenomanian-Turonian boundary (Late Cretaceous), in Stratigraphy and Paleoenvironments of the Cretaceous Western Interior Seaway, USA, Concepts in Sedimentol. Paleontol., vol. 6, edited by W. E. Dean, and M. A. Arthur, pp. 101126, Soc. Sediment. Geol., Tulsa, Okla., 1998.
  • Lee, J. J., Nutrition and physiology of the foraminifera, in Biochemistry and Physiology of Protozoa, vol. 3, edited by M. Levandowsky, and S. H. Hutner, pp. 4366, Academic, San Diego, Calif., 1980.
  • Lidgard, S., and P. R. Crane, Quantitative analyses of the early angiosperm radiation, Nature, 331, 344346, 1988.
  • Lipps, J. H., Plankton evolution, Evolution, 24, 122, 1970.
  • Lipps, J. H., Biotic interactions in benthic foraminifera, in Biotic Interactions in Recent and Fossil Benthic Communities, edited by M. J. S. Trevesz, and P. L. McCall, pp. 331376, Plenum, New York, 1983.
  • Longhurst, A., Iron grip on export production, Nature, 379, 585586, 1996.
  • Longoria, J. F., Stratigraphic, morphologic, and taxonomic studies of Aptian planktonic foraminifera, Rev. Esp. Micropaleontol., num. extraordinario, 134 pp., 1974.
  • Longoria, J. F., and M. A. Gamper, Albian planktonic foraminiferaa from the Sabinas basin of northern Mexico, J. Foraminiferal Res., 7, 196215, 1977.
  • Loutit, T. S., J. Hardenbol, P. R. Vail, and G. R. Baum, Condensed sections: The key to age determination and correlation of continental margin sequences, in Sea-Level Changes: An Integrated Approach, edited by C. K. Wilgus et al., pp. 183213, Soc. Econ. Mineral. Paleontol., Tulsa, Okla., 1988.
  • Ludwig, W. J., et al., Initial Reports of the Deep Sea Drilling Prog., vol. 71, U.S. Govt. Print. Off., Washington, D.C., 1983.
  • Mahoney, J. J., M. Storey, R. A. Duncan, K. J. Spencer, and M. Pringle, Geochemistry and age of the Ontong Java Plateau, in The Mesozoic Pacific: Geology, Tectonics, and Volcanism, Geophys. Monogr. Ser., vol. 77, edited by M. Pringle et al., pp. 233261, AGU, Washington, D.C., 1993.
  • Mahoney, J. J., et al., Initial Reports of the Ocean Drilling Program, 192, Ocean Drill. Program, College Station, Tex., in press, 2002.
  • Martin, J. H., Glacial-interglacial CO2 change: The iron hypothesis, Paleoceanography, 5, 113, 1990.
  • Martin, J. H., and S. E. Fitzwater, Iron deficiency limits phytoplankton growth in the northeast Pacific subarctic, Nature, 331, 341343, 1988.
  • Martin, J. H., et al., Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean, Nature, 371, 123129, 1994.
  • McCave, I. N., Depositional features of organic-rich black and green mudstones at DSDP Sites 386 and 387, western North Atlantic, Initial Rep. Deep Sea Drill. Program, 43, 411416, 1979.
  • McGillicuddy, D. J.Jr., and A. R. Robinson, Eddy-induced nutrient supply and new production in the Sargasso Sea, Deep Sea Res., 44, 14271450, 1997.
  • McGillicuddy, D. J.Jr., A. R. Robinson, D. A. Siegel, H. W. Jannasch, R. Johnson, T. D. Dickey, J. McNeil, A. F. Michaels, and A. H. Knap, Influence of mesoscale eddies on new production in the Sargasso Sea, Nature, 394, 263266, 1998.
  • Menegatti, A. P., H. Weissert, R. S. Brown, R. V. Tyson, P. Farrimond, A. Strasser, and M. Caron, High resolution δ13C-stratigraphy through the early Aptian “Livello Selli” of the Alpine Tethys, Paleoceanography, 13, 530545, 1998.
  • Mutterlose, J., Temperature-controlled migration of calcareous nannofloras in the northwest European Aptian, in Nannofossils and Their Applications, edited by J. A. Crux, and S. E. van Heck, pp. 122142, Ellis Horwood, Chichester, UK, 1989.
  • Norris, R. D., Symbiosis as an evolutionary innovation in the radiation of Paleocene planktic foraminifera, Paleobiology, 22, 461480, 1996.
  • Norris, R. D., Recognition and macroevolutionary significance of photosymbiosis in molluscs, corals, and foraminifera, in Isotope Paleobiology and Paleoecology, edited by W. L. Manger, and L. K. Meeks, Paleontol. Soc. Pap., 4, 68100, 1998.
  • Norris, R. D., and P. A. Wilson, Low-latitude sea-surface temperatures for the mid-Cretaceous and the evolution of planktic foraminifera, Geology, 26, 823826, 1998.
  • Norris, R. D., et al., Proceedings of the Ocean Drilling Program Initial Report, vol. 171B, Ocean Drill. Program, College Station, Tex., 1998.
  • Opdyke, B. N., E. Erba, and R. L. Larson, Hot LIPs, methane, and the carbon record of the Apticore, Eos Trans. AGU, 80(46), F486F487, Fall Meet. Suppl., 1999.
  • Orth, C. J., M. Attrep, L. R. Quintana, W. P. Elder, E. G. Kauffman, R. Diner, and T. Villamil, Elemental abundance anomalies in the late Cenomanian extinction interval: A search for the source(s), Earth Planet. Sci. Lett., 117, 189204, 1993.
  • Oschlies, A., and V. Garcon, Eddy-induced enhancement of primary production in a model of the North Atlantic Ocean, Nature, 394, 266269, 1998.
  • Palmer, M. R., and G. G. Ernst, Generation of hydrothermal megaplumes by cooling of pillow basalts at mid-ocean ridges, Nature, 393, 643647, 1998.
  • Pearson, P. N., Stable isotopes and the study of evolution in planktonic foraminifera, in Isotope Paleobiology and Paleoecology, edited by W. L. Manger, and L. K. Meeks, Paleontol. Soc. Pap., 4, 138178, 1998.
  • Pearson, P. N., P. W. Ditchfield, J. Singano, K. G. Harcourt-Brown, C. J. Nicholas, R. K. Olsson, N. J. Shackleton, and M. A. Hall, Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs, Nature, 413, 481487, 2001.
  • Poulsen, C. J., E. J. Barron, C. C. Johnson, and P. Fawcett, Links between major climatic factors and regional oceanic circulation in the mid-Cretaceous, in Evolution of the Cretaceous Ocean-Climate System, edited by E. Barrera, and C. C. Johnson, Spec. Pap. Geol. Soc. Am., 332, 7389, 1999a.
  • Poulsen, C. J., E. J. Barron, W. H. Peterson, and P. A. Wilson, A reinterpretation of mid-Cretaceous shallow marine temperatures through model-data comparison, Paleoceanography, 14, 679697, 1999b.
  • Poulsen, C. J., E. J. Barron, M. A. Arthur, and W. H. Peterson, Response of the mid-Cretaceous global ocean circulation to tectonic and CO2 forcings, Paleoceanography, 16, 576592, 2001.
  • Pratt, L. M., and J. D. King, Low marine productivity and high eolian input recorded by rhythmic black shales in mid-Cretaceous pelagic deposits from central Italy, Paleoceanography, 1, 507522, 1986.
  • Pratt, L. M., and C. N. Threlkeld, Stratigraphic significance of 13C/12C ratios in mid-Cretaceous rocks of the Western Interior, U.S.A., in The Mesozoic of Middle North America, edited by D. F. Stott, and D. J. Glass, Mem. Can. Soc. Pet. Geol., 9, 305312, 1984.
  • Pratt, L. M., M. A. Arthur, W. E. Dean, and P. A. Scholle, Paleo-oceanographic cycles and events during the Late Cretaceous in the Western Interior Seaway of North America, in Evolution of the Western Interior Basin, edited by W. G. E. Caldwell, and E. G. Kauffman, Spec. Pap. Geol. Assoc. Can., 39, 333354, 1993.
  • Premoli Silva, I., and W. V. Sliter, Cretaceous planktonic foraminiferal biostratigraphy and evolutionary trends from the Bottaccione Section Gubbio, Italy, Palaeontogr. Ital., 81, 290, 1995.
  • Premoli Silva, I., and W. V. Sliter, Cretaceous paleoceanography: Evidence from planktonic foraminiferal evolution, in Evolution of the Cretaceous Ocean-Climate System, edited by E. Barrera, and C. C. Johnson, Spec. Pap. Geol. Soc. Am., 332, 301328, 1999.
  • Premoli Silva, I., E. Erba, and M. E. Tornaghi, Paleoenvironmental signals and changes in surface fertility in mid-Cretaceous Corg-rich pelagic facies of the fucoid marls (central Italy), Geobios Mem. Spec., 11, 225236, 1989.
  • Premoli Silva, I., E. Erba, G. Salvini, C. Locatelli, and D. Verga, Biotic changes in Cretaceous oceanic anoxic events of the Tethys, J. Foraminiferal Res., 29, 352370, 1999.
  • Pringle, M. S., and R. A. Duncan, Basement ages from the southern and central Kerguelen Plateau: Initial products of the Kerguelen large igneous province (abstract), Eos Trans. AGU, 81, Spring Meet. Suppl., abstract V31A-04, 2000.
  • Ravelo, A. C., and R. G. Fairbanks, Oxygen isotopic composition of multiple species of planktonic foraminifera: Records of the modern photic zone temperature gradient, Paleoceanography, 7, 815831, 1992.
  • Ravelo, A. C., and R. G. Fairbanks, Carbon isotopic fractionation in multiple species of planktonic foraminifera from core-tops in the tropical Atlantic, J. Foraminiferal Res., 25, 5374, 1995.
  • Retallack, G. J., and D. L. Dilcher, Cretaceous angiosperm invasion of North America, Cretaceous Res., 7, 227252, 1986.
  • Rich, J. E., G. L. Johnson, J. E. Jones, and J. Campsie, A significant correlation between fluctuations in seafloor spreading rates and evolutionary pulsations, Paleoceanography, 1, 8595, 1986.
  • Richter, F. M., D. B. Rowley, and D. J. DePaolo, Sr isotope evolution of seawater: The role of tectonics, Earth Planet. Sci. Lett., 109, 1123, 1992.
  • Rivkin, R. B., et al., Vertical flux of biogenic carbon in the ocean: Is there food web control? Science, 272, 11631166, 1996.
  • Robaszynski, F., et al., Atlas de Foraminiféres planctoniques du Crétacé moyen, parts 1-2, Cah. Micropaleontol., 1–2, 1979.
  • Roth, P. H., Mesozoic calcareous nannofossil evolution: Relation to paleoceanographic events, Paleoceanography, 2, 601611, 1987.
  • Sageman, B. B., J. Rich, M. A. Arthur, W. E. Dean, C. E. Savrda, and T. J. Bralower, Multiple Milankovitch cycles in the Bridge Creek Limestone (Cenomanian-Turonian), Western Interior Basin, in Stratigraphy and Paleoenvironments of the Cretaceous Western Interior Seaway, USA, Concepts in Sedimentol. Paleontol., vol. 6, edited by W. E. Dean, and M. A. Arthur, pp. 153171, Soc. Sed. Geol., Tulsa, Okla., 1998.
  • Schlanger, S. O., and H. C. Jenkyns, Cretaceous oceanic anoxic events: Causes and consequences, Geol. Mijnbouw, 55, 179184, 1976.
  • Schlanger, S. O., M. A. Arthur, H. C. Jenkyns, and P. A. Scholle, The Cenomanian-Turonian oceanic anoxic event, 1, Stratigraphy and distribution of organic carbon-rich beds and the marine C excursion, in Marine Petroleum Source Rocks, edited by J. Brooks, and A. J. Fleet, Geol. Soc. Spec. Publ., 26, 371399, 1987.
  • Schmidt, G. A., and L. A. Mysak, Can increased poleward oceanic heat flux explain the warm Cretaceous climate? Paleoceanography, 11, 579593, 1996.
  • Scholle, P. A., and M. A. Arthur, Carbon isotope fluctuations in Cretaceous pelagic limestones: Potential stratigraphic and petroleum exploration tools, AAPGeol. Bull., 64, 6787, 1980.
  • Shackleton, N. J., and J. P. Kennett, Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: Oxygen and carbon isotope analysis in DSDP Sites 277, 279, and 280, Initial Rep. Deep Sea Drill. Proj., 29, 743755, 1975.
  • Shipboard Scientific Party, Leg 183 summary: Kerguelen Plateau-Broken Ridge—A large igneous province, Proc. Ocean Drill. Program Initial Rep., 183, 1101, 2000.
  • Siegel, D. A., The Rossby rototiller, Nature, 409, 576577, 2001.
  • Siegel, D. A., D. J. McGillicuddy Jr., and E. A. Fields, Mesoscale eddies, satellite altimetry and new production in the Sargasso Sea, J. Geophys. Res., 104, 13,35913,379, 1999.
  • Sigal, J., Chronostratigraphy and ecostratigraphy of Cretaceous formations recovered on DSDP Leg 47B, Site 398, Initial Rep. Deep Sea Drill. Proj., 47B, 287327, 1979.
  • Signor, P. W., and G. J. Vermeij, The plankton and the benthos: Origins and early history of an evolving relationship, Paleobiology, 20, 297319, 1994.
  • Sikora, P. J., and R. K. Olsson, A paleoslope model of late Albian to early Turonian foraminifera of the western Atlantic margin and North Atlantic basin, Mar. Micropaleontol., 18, 2572, 1991.
  • Sinton, C. W., and R. A. Duncan, Potential links between ocean plateau volcanism and global ocean anoxia at the Cenomanian-Turonian boundary, Econ. Geol., 92, 836842, 1997.
  • Sinton, C. W., R. A. Duncan, M. Storey, J. Lewis, and J. J. Estrada, An oceanic flood basalt province within the Caribbean plate, Earth Planet. Sci. Lett., 155, 221235, 1998.
  • Sliter, W. V., Cretaceous foraminifers—Depth habitats and their origin, Nature, 239, 514515, 1972.
  • Sliter, W. V., Cretaceous foraminifers from the southwestern Atlantic Ocean, Leg 36, Deep Sea Drilling Project, Initial Rep. Deep Sea Drill. Proj., 36, 519573, 1977.
  • Sliter, W. V., Mesozoic foraminifers and deep sea benthic environments from Deep Sea Drilling Project Sites 415 and 416, eastern North Atlantic, Initial Rep. Deep Sea Drill. Proj., 50, 353370, 1980.
  • Sliter, W. V., Aptian anoxia in the Pacific basin, Geology, 17, 909912, 1989a.
  • Sliter, W. V., Biostratigraphic zonation for Cretaceous planktonic foraminifers examined in thin section, J. Foraminiferal Res., 19, 119, 1989b.
  • Sliter, W. V., Cretaceous planktic foraminiferal biostratigraphy of the Calera Limestone, northern California, USA, J. Foraminifieral Res., 29, 318339, 1999.
  • Snow, L. J., and R. A. Duncan, Hydrothermal links between ocean plateau formation and global anoxia, Eos Trans. AGU, 82(47), Fall Meet. Suppl., abstract OS41A-0437, 2001.
  • Southam, J. R., W. H. Peterson, and G. W. Brass, Dynamics of anoxia, Palaeogeogr. Palaeoclimatol. Palaeoecol., 40, 183198, 1982.
  • Stanley, S. M., and L. A. Hardie, Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry, Palaeogeogr. Palaeoclimatol. Palaeoecol., 144, 319, 1998.
  • Stoll, H. M., and D. P. Schrag, Evidence for glacial control of rapid sea level changes in the early Cretaceous, Science, 272, 17711774, 1996.
  • Stoll, H. M., and D. P. Schrag, High-resolution stable isotope records from the Upper Cretaceous rocks of Italy and Spain: Glacial episodes in a greenhouse planet? Geol. Soc. Am. Bull., 112, 308319, 2000.
  • Sugarman, P. J., K. G. Miller, R. K. Olsson, J. V. Browning, J. D. Wright, L. M. De Romero, T. S. White, F. L. Muller, and J. Uptegrove, The Cenomanian/Turonian carbon burial event, Bass River, NJ, USA: Geochemical, paleoecological, and sea-level changes, J. Foraminiferal Res., 29, 438452, 1999.
  • Summerhayes, C. P., Organic facies of middle Cretaceous black shales in the deep North Atlantic, AAPG Bull., 65, 23642380, 1981.
  • Summerhayes, C. P., Organic-rich Cretaceous sediments from the North Atlantic, in Marine Petroleum Source Rocks, edited by J. Brooks, and A. J. Fleet, Geol. Soc. Spec. Publ., 26, 301316, 1987.
  • Tappan, H., Phytoplankton: Below the salt at the global table, J. Paleontol., 60, 545554, 1986.
  • Tappan, H., and A. R. Loeblich Jr., Evolution of the oceanic plankton, Earth Sci. Rev., 9, 207240, 1973.
  • Tarduno, J. A., W. V. Sliter, L. Kroenke, M. Leckie, H. Mayer, J. J. Mahoney, R. Musgrave, M. Storey, and E. L. Winterer, Rapid formation of Ontong Java Plateau by Aptian Mantle Plume Volcanism, Science, 254, 399403, 1991.
  • Tejada, M. L. G., J. J. Mahoney, R. A. Duncan, and M. P. Hawkins, Age and geochemistry of basement and alkalic rocks of Malaita and Santa Isabel, Solomon Islands, southern margin of Ontong Java Plateau, J. Petrol., 37, 361394, 1996.
  • Theyer, C. W., Sediment-mediated biological disturbance and the evolution of marine benthos, in Biotic Interactions in Recent and Fossil Benthic Communities, edited by M. J. S. Tevesz, and P. L. McCall, pp. 479625, Plenum, New York, 1983.
  • Thomas, E., and N. J. Shackleton, The Paleocene-Eocene benthic foraminiferal extinction and stable isotope anomalies, in Correlation of the Early Paleogene in Northwest Europe, edited by R. W. O. Knox, and R. E. Dunay, Geol. Soc. Spec. Publ., 101, 401441, 1996.
  • Thurow, J., H.-J. Brumsack, J. Rullkötter, R. Littke, and P. Meyers, The Cenomanian/Turonian boundary event in the Indian Ocean—A key to understand the global picture, in Synthesis of Results From Scientific Drilling in the Indian Ocean, Geophys. Monogr. Ser., vol. 70, pp. 253273, AGU, Washington, D.C., 1992.
  • Tjalsma, R. C., and G. P. Lohmann, Paleocene-Eocene bathyal and abyssal benthic foraminifera from the Atlantic Ocean, Micropaleontol. Spec. Publ., 4, 190, 1983.
  • Toggweiler, J. R., An ultimate limiting nutrient, Nature, 400, 511512, 1999.
  • Tornaghi, M. E., I. Premoli Silva, and M. Ripepe, Lithostratigraphy and planktonic foraminiferal biostratigraphy of the Aptian-Albian “Scisti a Fucoidi” in the Piobbico core, Marche, Italy: Background for cyclostratigraphy, Riv. Ital. Paleontol. Strat., 95, 223264, 1989.
  • Tortell, P. D., M. T. Maldonado, and N. M. Price, The role of heterotrophic bacteria in iron-limited ocean ecosystems, Nature, 383, 330332, 1996.
  • Tucholke, B. E., and P. R. Vogt, Western North Atlantic: Sedimentary evolution and aspects of tectonic history, Initial Rep. Deep Sea Drill. Proj., 43, 791825, 1979.
  • Tyrell, T., The relative influences of nitrogen and phosphorous on oceanic primary productivity, Nature, 400, 525531, 1999.
  • Uz, B. M., J. A. Yoder, and V. Osychny, Pumping nutrients to ocean surface waters by the action of propagating planetary waves, Nature, 409, 597600, 2001.
  • Vermeij, G. J., The Mesozoic marine revolution: Evidence from snails, predators, and grazers, Paleobiology, 3, 245258, 1977.
  • Vermeij, G. J., Economics, volcanoes, and Phanerozoic revolutions, Paleobiology, 21, 125152, 1995.
  • Vogt, P. R., Volcanogenic upwelling of anoxic nutrient-rich water: A possible factor in carbonate-bank/reef demise and benthic faunal extinctions, Geol. Soc. Am. Bull., 101, 12251245, 1989.
  • Wei, K.-Y., and J. P. Kennett, Taxonomic evolution of Neogene planktonic foraminifera and paleoceanographic relations, Paleoceanography, 1, 6784, 1986.
  • Weissert, H., and A. Lini, Ice age interludes during the time of Cretaceous greenhouse climate?, in Controversies in Modern Geology, edited by D. W. Mueller et al., pp. 173191, Academic, San Diego, Calif., 1991.
  • Weissert, H., A. Lini, K. B. Föllmi, and O. Kuhn, Correlation of Early Cretaceous carbon isotope stratigraphy and platform drowning events: A possible link? Palaeogeogr. Palaeoclimatol. Palaeoecol., 137, 189203, 1998.
  • Whitechurch, H., R. Montigny, J. Sevigny, M. Storey, and V. Salters, K-Ar and 40Ar-39Ar ages of central Kerguelen Plateau basalts, Proc. Ocean Drill. Program Sci. Results, 120, 7177, 1992.
  • Wilde, P., and W. B. N. Berry, Progressive ventilation of the oceans: Potential for return to anoxic conditions in the post-Paleozoic, in Nature and Origin of Cretaceous Carbon-Rich Facies, edited by S. Schlanger, and M. B. Cita, pp. 209224, Academic, San Diego, Calif., 1982.
  • Williams, R. G., and M. J. Follows, Eddies make ocean deserts bloom, Nature, 394, 228229, 1998.
  • Wilson, P. A., and R. D. Norris, Warm tropical ocean surface and global anoxia during the mid-Cretaceous period, Nature, 412, 425429, 2001.
  • Wonders, A. A. H., Middle and Late Cretaceous planktonic foraminifera of the western Mediterranean area, Utrecht Micropaleontol. Bull., 24, 1157, 1980.
  • Woo, K. S., T. F. Anderson, L. B. Railsback, and P. A. Sandberg, Oxygen isotope evidence for high salinity surface seawater in the mid-Cretaceous Gulf of Mexico: Implications for warm saline deepwater formation, Paleoceanography, 7, 673685, 1992.
  • Zachos, J., L. D. Stott, and K. C. Lohmann, Evolution of early Cenozoic marine temperatures, Paleoceanography, 9, 353387, 1994.
  • Zeebe, R. E., Seawater pH and isotopic paleotemperatures of Cretaceous oceans, Palaeogeogr. Palaeoclimatol. Palaeoecol., 170, 4957, 2001.
  • Zimmerman, H. B., A. Boersma, and F. W. McCoy, Carbonaceous sediments and paleoenvironment of the Cretaceous South Atlantic Ocean, in Marine Petroleum Source Rocks, edited by J. Brooks, and A. J. Fleet, Geol. Soc. Spec. Publ., 24, 271286, 1987.