SEARCH

SEARCH BY CITATION

References

  • Bates, C. P., Intermodal coupling at the junction between straight and curved waveguides, Bell Syst. Tech. J., 48, 22592280, 1969.
  • Chew, W. C., Some observations on the spatial and eigenfunction representations of dyadic Green's function, IEEE Trans. Antennas Propag., 37, 13221327, 1989.
  • Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, New York, 1990.
  • Collin, R. E., Field Theory of Guided Waves, McGraw-Hill, New York, 1960.
  • Daniele, V. G., New expansions of dyadic Green's functions in the uniform waveguides with perfectly conducting walls, IEEE Trans. Antennas Propag., 30, 497499, 1982.
  • Fan, G.-X., Cylindrically conformal slotted-waveguide array antenna, Ph.D. dissertation, Tsinghua Univ., Beijing, China, 1995.
  • Fan, G.-X., and Q. J. Yang, Eigenmodes and angular propagating constants in curved waveguides (in Chinese), Chin. J. Electron., 3(3), 2228, 1994a.
  • Fan, G.-X., and Q. J. Yang, Numerical computation of the Bessel functions of imaginary orders, Chin. J. Comput. Phys., 11(4), 5864, 1994b.
  • Fan, G.-X., and Q. J. Yang, Numerical computation of the modified Bessel functions of imaginary orders, Acta Electron. Sin., 23(6), 6064, 1995.
  • Jones, D. S., The Theory of Generalised Functions, 2nd ed., Cambridge Univ. Press, New York, 1982.
  • Kisliuk, M., The dyadic Green's functions for cylindrical waveguides and cavities, IEEE Trans. Microwave Theory Tech., 28, 894898, 1980.
  • Lee, S. W., J. Boersma, C. L. Law, and G. Deschamps, Singularity in Green's function and its numerical evaluation, IEEE Trans. Antennas Propag., 28, 311317, 1980.
  • Li, L. W., P. S. Kooi, M. S. Leong, T. S. Yeo, and S. L. Ho, On the eigenfunction expansion of electromagnetic dyadic Green's functions in rectangular cavities and waveguides, IEEE Trans. Microwave Theory Tech., 43, 700702, 1995.
  • Mittra, R. (Ed.), Computer Techniques for Electromagnetics, Taylor and Francis, Philadelphia, Pa., 1972.
  • Nachamkin, J., Integrating the Dyadic Green's function near source, IEEE Trans. Antennas Propag., 38, 919921, 1990.
  • Pathak, P. H., On the eigenfunction expansion of electromagnetic dyadic Green's functions, IEEE Trans. Antennas Propag., 31, 837846, 1983.
  • Rahmat-Samii, Y., On the question of computation of the dyadic Green's at source region in waveguides and cavities, IEEE Trans. Microwave Theory Tech., 23, 762765, 1975.
  • Tai, C. T., Commences on “Electric dyadic Green's functions in source regions,”, Proc. IEEE, 69, 282285, 1981.
  • Tai, C. T., Dyadic Green's Functions in Electromagnetic Theory, 2nd ed., IEEE Press, Piscataway, N. J., 1994.
  • Tai, C. T., and P. Rozenfeld, Different representations of dyadic Green's functions for rectangular cavity, IEEE Trans. Microwave Theory Tech., 25, 597601, 1976.
  • Wang, J. J. H., Analysis of a three-dimensional arbitrarily shaped dielectric or biological body inside a rectangular waveguide, IEEE Trans. Microwave Theory Tech., 26, 457462, 1978.
  • Wang, J. J. H., A unified and consistent view on the singularities of the electric dyadic Green's function in the source region, IEEE Trans. Antennas Propag., 30, 463468, 1982.
  • Wang, J. J. H., Generalized Moment Methods in Electromagnetics: Formulation and Computer Solution of Integral Equations, John Wiley, New York, 1991.
  • Yaghjian, A. D., Electric dyadic Green's functions in source regions, Proc. IEEE, 68, 248263, 1980.
  • Yang, Q. J., Electromagnetic Field Theory, vol. 1, Higher Educ. Press, Beijing, 1992.