SEARCH

SEARCH BY CITATION

References

  • Alumbaugh, D. L., and G. A. Newman, Time efficient 3-D electromagnetic modeling on massively parallel computers, in Proceedings of the First International Symposium on Three-Dimensional Electromagnetics, pp. 205218, Schlumberger-Doll Res., Ridgefield, Conn., 1995.
  • Anderson, W. L., Numerical integration of related Hankel transforms of orders 0 and 1 by adaptive digital filtering, Geophysics, 44, 12871305, 1979.
  • Avdeev, D. B., A. V. Kuvshinov, O. V. Pankratov, and G. A. Newman, High-performance three-dimensional electromagnetic modelling using modified Neumann series: Wide-band numerical solution and examples, J. Geomagn. Geoelectr, 49, 15191539, 1997.
  • Avdeev, D. B., A. V. Kuvshinov, O. V. Pankratov, and G. A. Newman, Three dimensional induction logging problems, part I, An integral equation solution and model comparison, Geophysics, 67, 413426, 2002.
  • Chan, T. F., E. Gallopoulos, V. Simoncini, T. Szeto, and C. H. Tong, A quasi-minimal residual variant of the Bi-CGSTAB algorithm for nonsymmetric systems, SIAM J. Sci. Comp., 15, 338347, 1994.
  • Cheryauka, A. B., and M. S. Zhdanov, Electromagnetic tensor Green's functions and their integrals in transverse isotropic media, in Proceedings of the Consortium for Electromagnetic Modeling and Inversion 2001 Annual Meeting, pp. 3984, Univ. of Utah, Salt Lake City, 2001.
  • Coggon, J. H., Electromagnetic and electrical modeling by the finite element method, Geophysics, 36, 132155, 1971.
  • Driessen, M., and H. A. van der Vorst, Bi-CGSTAB in semiconductor modeling, in Simulation of Semiconductor Devices and Processes, vol. 4, edited by W. Fichtner, pp. 4554, Hartung-Gorre, Zurich, 1991.
  • Druskin, V., L. Knizhnerman, and P. Lee, New spectral Lanczos decomposition method for induction modeling in arbitrary 3D geometry, Geophysics, 64, 701706, 1999.
  • Ellis, R. G., Smooth 3D inversion of airborne transient electromagnetic data using the TFQMR-FFT fast integral equation method, in Proceedings of the Second International Symposium on Three-Dimensional Electromagnetics, pp. 123127, Univ. of Utah, Salt Lake City, 1999.
  • Felsen, L. B., and N. Marcuvitz, Radiation and Scattering of Waves, 888 pp., IEEE Press, Piscataway, N. J., 1994.
  • Fletcher, R., Conjugate gradient methods for indefinite linear systems, in Lecture Notes in Mathematics, vol. 596, pp. 7389, Springer-Verlag, New York, 1976.
  • Freund, R. W., A transpose-free quasi-minimum residual algorithm for non-Hermitian systems, SIAM J. Sci. Comp., 14, 470482, 1993.
  • Freund, R. W., and N. M. Nachtigal, QMR: A quasi-minimal residual method for non-Hermitian linear systems, Numer. Math., 60, 315339, 1991.
  • Golub, G. H., and C. F. Van Loan, Matrix Computations, 3rd ed., 694 pp., Johns Hopkins Univ. Press, Baltimore, Md., 1996.
  • Habashy, T. M., R. W. Groom, and B. R. Spies, Beyond the Born and Rytov approxinations: A nonlinear approach to electromagnetic scattering, J. Geophys. Res., 98, 17591775, 1993.
  • Hestenes, M. R., and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Natl. Bur. Stand., 49, 409435, 1952.
  • Hohmann, G. W., Three-dimensional induced polarization and EM modeling, Geophysics, 40, 309324, 1975.
  • Hursán, G., Storage reduction and fast matrix multiplication integral-based geophysical problems, in Proceedings of 2001 Consortium for Electomagnetic Modeling and Inversion Annual Meeting, pp. 1736, Univ. of Utah, Salt Lake City, 2001.
  • Jin, J., The Finite Element Method in Electromagnetics, 464 pp., John Wiley, New York, 1993.
  • Kelley, C. T., Iterative Methods for Linear and Nonlinear Equations, vol. 16, Frontiers in Applied Mathematics, SIAM Ser., Soc. for Ind. and Appl. Math., Philadelphia, Pa., 1995.
  • Lanczos, C., Solution of systems of linear equations by minimized iterations, J. Res. Natl. Bur. Stand., 49, 3353, 1952.
  • Mackie, R. L., J. T. Smith, and T. R. Madden, Three-dimensional EM modeling using FD equations: The MT example, Radio Sci., 29, 923935, 1994.
  • Pankratov, O. V., D. B. Avdeev, and A. V. Kuvshinov, Scattering of electromagnetic field in inhomogeneous earth: Forward problem solution, Izv. Akad. Nauk SSSR Fiz. Zemli, 3, 1725, 1995.
  • Portniaguine, O. N., G. Hursán, and M. S. Zhdanov, Compression in 3D electromagnetic modeling, in Proceedings of the Second International Symposium on Three-Dimensional Electromagnetics, pp. 209212, Univ. of Utah, Salt Lake City, 1999.
  • Rätz, S., A 3D finite element code for modeling of electromagnetic responses, in Proceedings of the Second International Symposium on Three-Dimensional Electromagnetics, pp. 3336, Univ. of Utah, Salt Lake City, 1999.
  • Saad, Y., and M. N. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear system, SIAM J. Sci. Stat. Comp., 7, 856859, 1986.
  • Samokhin, A. B., Integral equations of electrodynamics for three- dimensional structures and iteration methods of solving them (A review), J. Comm. Tech. Electr., 38, 1534, 1993.
  • Singer, B. S., and E. B. Fainberg, Generalization of the iterative dissipative method for modeling electromagnetic fields in nonuniform media with displacement currents, J. Appl. Geophys., 34, 4146, 1995.
  • Smith, J. T., Conservative modeling of 3D EM fields, parts 1, 2, Geophysics, 61, 13081324, 1996.
  • Sonneveld, P., CGS, a fast Lanczos-type solver for nonsymmetric linear systems, J. Sci. Stat. Comp., 10, 3652, 1989.
  • Tang, C. M., Electromagnetic fields due to dipole antennas embedded in stratified anisotropic media, IEEE Trans. Antennas Propag., 27, 665670, 1979.
  • van der Vorst, H. A., BICGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comp., 13, 631644, 1992.
  • Varentsov, I. M., The selection of effective FD solvers on 3D EM modeling schemes, in Proceedings of the Second International Symposium on Three-Dimensional Electromagnetics, pp. 201204, Univ. of Utah, Salt Lake City, 1999.
  • Varentsov, I. M., I. Y. Fomenko, N. G. Golubev, S. Mehanee, G. Hursán, and M. S. Zhdanov, Comparative study of 3-D finite difference and integral equation methods, in Proceedings of 2000 Consortium for Electomagnetic Modeling and Inversion Annual Meeting, pp. 3574, Univ. of Utah, Salt Lake City, 2000.
  • Wannamaker, P. E., G. W. Hohmann, and W. A. SanFilipo, Electromagnetic modeling of three dimensional bodies in layered earths using integral equations, Geophysics, 49, 6074, 1984.
  • Weidelt, P., EM induction in three-dimensional structures, J. Geophysics, 41, 85109, 1975.
  • Xiong, Z., Electromagnetic fields of electrical dipoles embedded in a stratified anisotropic earth, Geophysics, 54, 16431646, 1989.
  • Xiong, Z., EM modeling of three-dimensional structures by the method of system iteration using integral equations, Geophysics, 57, 15561561, 1992.
  • Zhdanov, M. S., Geophysical Inverse Theory and Regularization Problems, 609 pp., Elsevier Sci., New York, 2002.
  • Zhdanov, M. S., and S. Fang, Quasi-linear series in three-dimensional electromagnetic modeling, Radio Sci., 32, 21672188, 1997.
  • Zhdanov, M. S., and G. V. Keller, The Geoelectrical Methods in Geophysical Exploration, 873 pp., Elsevier Sci., New York, 1994.
  • Zhdanov, M. S., I. M. Varentsov, J. T. Weaver, N. G. Golubev, and V. A. Krylov, Methods for modeling EM fields (results from COMMEMI), J. Appl. Geophys., 37(3–4), 133271, 1997.
  • Zhdanov, M. S., V. I. Dmitriev, S. Fang, and G. Hursán, Quasi-analytical approximations and series in electromagnetic modeling, Geophysics, 65, 17461757, 2000.