SEARCH

SEARCH BY CITATION

References

  • Belkebir, K., and M. Saillard, Sepecial section: Testing inversion algorithms against experimental data, Inverse Probl., 17, 15651571, 2001.
  • Belkebir, K., and A. G. Tijhuis, Using multiple frequency information in the iterative solution of a two-dimensional non-linear inverse problem, paper presented at PIERS 96: Progress In Electromagnetic Research Symposium, Innsbruck, Austria, 1996.
  • Belkebir, K., S. Bonnard, F. Pezin, and M. Saillard, Validation of 2D inverse scattering algorithms from multi-frequency experimental data, J. Electron. Waves Appl., 14, 16371667, 2000.
  • Bloemenkamp, R. F., A. Abubakar, and P. M. van den Berg, Inversion of experimental multi-frequency data using the contrast source inversion method, Inverse Probl., 5, 16111622, 2001.
  • Chan, T. F., and C. K. Wong, Total variation blind deconvolution, IEEE Trans. Image Processing, 7, 370375, 1998.
  • Charbonnier, P., L. Blanc-Féraud, G. Aubert, and M. Barlaud, Deterministic edge-preserving regularization in computed imaging, IEEE Trans. Image Process, 6, 298311, 1996.
  • Chew, W. C., Complexity issues in inverse scattering problems, paper presented at paper presented at the 1999 IEEE Antennas and Propagation Society, International Symposium, Orlando, Fla., 1999.
  • Colton, D., J. Coyle, and P. Monk, Recent Developments in Inverse Acoustic Scattering Theory, Siam Rev., 42, 369414, 2000.
  • Dourthe, C., Ch. Pichot, J. Y. Dauvignac, L. Blanc-Féraud, and M. Barlaud, Regularized bi-conjugate gradient algorithm for tomographic reconstruction of buried objects, IEICE Trans. Electron., E83-C, 18581863, 2000.
  • Habashy, T. M., M. L. Oristaglio, and A. T. de Hoop, Simultaneous nonlinear reconstruction of two-dimensional permittivity and conductivity, Radio Sci., 29, 11011118, 1994.
  • Lesselier, D., and B. Duchêne, Wavefield inversion of objects in stratified environments. From backpropagation schemes to full solutions, Review of Radio Sci. 1993–1996, edited by R. Stone, pp. 235268, Oxford Univ. Press, New York, 1996.
  • Litman, A., D. Lesselier, and F. Santosa, Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level-set, Inverse Probl., 14, 685706, 1998.
  • Lobel, P., L. Blanc-Féraud, Ch. Pichot, and M. Barlaud, A new regularization scheme for inverse scattering, Inverse Probl., 13, 403410, 1997.
  • Rudin, L., S. Osher, and C. Fatemi, Nonlinear total variation based noise removal algorithm, Physica, 60D, 259268, 1992.
  • Sabatier, P. C., Past and future of inverse problems, J. Math. Phys., 41, 40824124, 2000.
  • van den Berg, P. M., Iterative computational techniques in scattering based upon the integrated square error criterion, IEEE Trans. Antennas Propagation, 32, 10631071, 1981.
  • van den Berg, P. M., and A. Abubakar, Contrast source inversion method: State of art, Progress in Electromagnetics Research, 34, 189218, 2001.
  • van den Berg, P. M., and R. E. Kleinman, A total variation enhanced modified gradient algorithm for profile reconstruction, Inverse Probl., 11, L5L10, 1995.
  • van den Berg, P. M., and R. E. Kleinman, A contrast source inversion method, Inverse Probl., 13, 16071620, 1997.
  • van den Berg, P. M., A. L. van Broekhoven, and A. Abubakar, Extended contrast source inversion, Inverse Probl., 15, 13251344, 1999.
  • Zhdanov, M., and G. Hursan, 3D electromagnetic inversion based on quasi-analytical approximation, Inverse Probl., 16, 12971322, 2000.