SEARCH

SEARCH BY CITATION

References

  • Belkebir, K., and A. G. Tijhuis, Using multiple frequency information in the iterative solution of a two-dimensional nonlinear inverse problem, in Proc. Progress Electromagnetic Research Symp. (PIERS '96), Innsbruck, Austria, p. 353, EMW Publ., Cambridge, Mass., 8–12 July 1996.
  • Bertero, M., Linear inverse and ill-posed problems, Adv. Electron. Electron Phys., vol. 75, edited by P. W. Hawkes, pp. 1120, Academic, San Diego, Calif., 1989.
  • Budko, N. V., and P. M. van den Berg, Two-dimensional object characterization with an effective model, J. Electromagn. Waves Appl., 12(2), 177190, 1998.
  • Budko, N. V., and P. M. van den Berg, Characterization of a two-dimensional subsurface object with an effective scattering model, IEEE Trans. Geosci. Remote Sens., 37(5), 25852596, 1999Sept.
  • Chew, W. C., Waves and Fields in Inhomogeneous Media, Oxford Univ. Press, New York, 1996.
  • Chew, W. C., and J. H. Lin, A frequency-hopping approach for microwave imaging of large inhomogeneous bodies, IEEE Microwave Guided Wave Lett., 5(12), 439441, 1995Dec.
  • Chiu, C.-C., and Y.-W. Kiang, Inverse scattering of a buried conducting cylinder, Inverse Problems, 7(2), 187202, Apr. 1991a.
  • Chiu, C.-C., and Y.-W. Kiang, Electromagnetic imaging for an imperfectly conducting cylinder, IEEE Trans. Microwave Theory Tech., 39(9), 16321639, Sept. 1991b.
  • Chiu, C.-C., and Y.-W. Kiang, Microwave imaging of multiple conducting cylinders, IEEE Trans. Microwave Theory Tech., 40(8), 933941, Aug. 1992a.
  • Chiu, C.-C., and Y.-W. Kiang, Electromagnetic inverse scattering of a conducting cylinder buried in a lossy half-space, IEEE Trans. Antennas Propag., 40(12), 15621565, Dec. 1992b.
  • Dogaru, T., and L. Carin, Time-domain sensing of targets buried under a rough air–ground interface, IEEE Trans. Antennas Propag., 46(3), 360372, Mar. 1998.
  • Dogaru, T., L. Collins, and L. Carin, Optimal time-domain detection of a deterministic target buried under a randomly rough interface, IEEE Trans. Antennas Propag., 49(3), 313326, Mar. 2001.
  • Dorn, O., E. L. Miller, and C. M. Rappaport, A shape reconstruction method for electromagnetic tomography using adjoint fields and level sets, Inverse Problems, 16(5), 11191156, Oct. 2000.
  • Dubey, A. C., J. F. Harvey, J. T. Broach, and V. George (eds.), Detection and Remediation Technologies for Mines and Minelike Targets VI, Proc. SPIE, vol. 4394, SPIE, Orlando, Fla., Oct. 2001.
  • Feng, H., D. A. Castañon, and W. C. Karl, Tomographic reconstruction using curve evolution, in Proc. 2000 IEEE Conf. on Computer Vision and Pattern Recognition, Hilton Head Island, SC, USA, vol. 1, pp. 361366, IEEE, Piscataway, N.J., 13–15 June 2000a.
  • Feng, H., D. A. Castañon, W. C. Karl, and E. L. Miller, GPR imaging approaches for buried plastic landmine detection, in Detection and Remediation Technologies for Mines and Minelike Targets V, Proc. SPIE, vol. 4038, edited by A. C. Dubey et al., pp. 14851496, SPIE, Orlando, Fla., Aug. 2000b.
  • Galdi, V., L. B. Felsen, and D. A. Castañon, Quasi-ray Gaussian beam algorithm for time-harmonic two-dimensional scattering by moderately rough interfaces, IEEE Trans. Antennas Propag., 49(9), 13051314, Sept. 2001a.
  • Galdi, V., L. B. Felsen, and D. A. Castañon, Gaussian beam algorithms for rough surface underground imaging, in Proc. 7thInt. Conference on Electromagnetics in Advanced Applications (ICEAA '01), Torino, Italy, pp. 175178, Polytech. Univ. of Turin, Turin, Italy, 10–14 Sept. 2001b.
  • Galdi, V., D. A. Castañon, and L. B. Felsen, Multifrequency reconstruction of moderately rough interfaces via quasi-ray Gaussian beams, IEEE Trans. Geosci. Remote Sens., 40(2), 453460, Feb. 2002a.
  • Galdi, V., L. B. Felsen, and D. A. Castañon, Quasi-ray Gaussian beam algorithm for short-pulse two-dimensional scattering by moderately rough dielectric interfaces, IEEE Trans. Antennas Propag., 50(12), in press, Dec. 2002b.
  • Galdi, V., J. Pavlovich, W. C. Karl, D. A. Castañon, and L. B. Felsen, Moderately rough dielectric interface reconstruction via short-pulse quasi-ray Gaussian beams, IEEE Trans. Antennas Propag., 51(3), in press, Mar. 2003.
  • Hansen, P. C., Analysis of discrete ill-posed problems by means of the L-curve, SIAM Rev., 34(4), 561580, Dec. 1992.
  • Hipp, J. E., Soil electromagnetic parameters as functions of frequency, soil density, and soil moisture, Proc. IEEE, 62(1), 98103, Jan. 1974.
  • Karl, W. C., Regularization in image restoration and reconstruction, in Handbook of Image and Video Processing, edited by A. Bovik, pp. 141160, Academic, San Diego, Calif., 2000.
  • Keller, J. B., Accuracy and validity of the Born and Rytov approximations, J. Opt. Soc. Am., 59(8), 10031004, Aug. 1969.
  • Leviatan, Y., and A. Boag, Analysis of electromagnetic scattering from dielectric cylinders using a multifilament current model, IEEE Trans. Antennas Propag., 35(10), 11191127, 1987.
  • Litman, A., D. Lesselier, and F. Santosa, Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level set, Inverse Problems, 14(3), 685706, June 1998.
  • Maciel, J. J., and L. B. Felsen, Gabor-based narrow-waisted Gaussian beam algorithm for transmission through a spherically layered radome, in Proc. 2001 IEEE Antennas and Propagat. Int. Symp., Boston, MA, vol. 1, pp. 570573, IEEE, Piscataway, N.J., 8–13 July 2001.
  • Miller, E. L., M. Kilmer, and C. Rappaport, A new shape-based method for object localization and characterization from scattered field data, IEEE Trans. Geosci. Remote Sens., 38(4), 16821696, July 2000.
  • Osher, S., and J. Sethian, Fronts propagation with curvature dependent speed: Algorithms based on Hamilton–Jacobi formulations, J. Comp. Phys., 79(1), 1249, Nov. 1988.
  • Ramananjaona, C., M. Lambert, D. Lesselier, and J.-P. Zolésio, Shape reconstruction of buried obstacles by controlled evolution of a level set: From a min–max formulation to numerical experimentation, Inverse Problems, 17(4), 10871111, Aug. 2001a.
  • Ramananjaona, C., M. Lambert, and D. Lesselier, Shape inversion from TM and TE real data by controlled evolution of level sets, Inverse Problems, 17(6), 15851595, Dec. 2001b.
  • Rao, B., and L. Carin, Beam-tracing-based inverse scattering for general aperture antennas, J. Opt. Soc. Am. A Opt. Image Sci., 16(9), 22192231, Sept. 1999.
  • Santosa, F., A level-set approach for inverse problems involving obstacles, ESAIM, Control Optim. Calc. Var., 1, 1733, 1996.
  • Shah, J., Riemannian drums, anisotropic curve evolution, and segmentation, J. Vis. Commun. Image Represent., 11(2), 142153, June 2000.
  • Shumaker, L. L., Spline Functions: Basic Theory, John Wiley, New York, 1981.
  • Yang, B., and C. M. Rappaport, Response of realistic soil for GPR applications with 2-D FDTD, IEEE Trans. Geosci. Remote Sens., 39(6), 11981205, June 2001.
  • Yezzi, A., S. Kichenassamy, K. Kumar, P. Olver, and A. Tennenbaum, A geometric snake model for segmentation of medical imagery, IEEE Trans. Med. Imag., 16(2), 199209, 1997.
  • Zhan, H., C. M. Rappaport, M. El-Shenawee, and E. L. Miller, Mine detection under rough ground surfaces using 2-D FDTD modeling and hypothesis testing, in Proc. 2001 IEEE Antennas Propagat. Int. Symposium, Boston, MA, USA, vol. 3, p. 756, IEEE, Piscataway, N.J., 8–13 July 2001.