SEARCH

SEARCH BY CITATION

References

  • Aki, K., and P. G. Richards, Quantitative Seismology, Theory and Methods, vol. 1, W. H. Freeman, New York, 1980.
  • Amin, M. B., and J. R. James, Techniques for utilization of hexagonal ferrites in radar absorbers, 1, Broadband planar coatings, Radio Electron. Eng. (London), 51, 209218, 1981.
  • Auzanneau, F., and R. W. Ziolkowski, Microwave signal rectification using artificial composite materials composed of diode-loaded electrically small dipole antennas, IEEE Trans. Microwave Theory Tech., 46(11), 16281637, 1998a.
  • Auzanneau, F., and R. W. Ziolkowski, Theoretical study of synthetic bianisotropic materials, J. Electromagn. Waves Appl., 12, 353370, 1998b.
  • Berenger, J. P., A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114(2), 185200, 1994.
  • Bohren, C. F., R. Luebbers, H. S. Langdon, and F. Hunsenberger, Microwave-absorbing chiral composites: Is chirality essential or accidental? Appl. Opt., 31(30), 64036407, 1992.
  • Bossavit, A., ‘Generalized finite differences’ in computational electromagnetics, in Geometric Methods for Computational Electromagnetics, Progress in Electromagnetics Research, PIER 32, edited by F. L. Teixeira, pp. 4564, EMW Publishing, Cambridge, Mass., 2001.
  • Brewitt-Taylor, C. R., Modeling of helix-loaded chiral radar-absorbing layers, in Progress in Electromagnetics Research, PIER 9, edited by J. A. Kong, pp. 288310, Elsevier Sci., New York, 1994.
  • Centeno, E., and D. Felbacq, Light propagation control by finite-size effects in photonic crystals, Phys. Lett. A, 292, 165169, 2000.
  • Chambers, B., and K. L. Ford, Topology for tunable radar absorbers, Electron. Lett., 36(15), 13041306, 2000.
  • Chew, W. C., and W. Weedon, A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates, Microwave Opt. Technol. Lett., 7(13), 599604, 1994.
  • Chew, W. C., J. M. Jin, and E. Michielssen, Complex coordinate system as a generalized absorbing boundary condition, in Proceedings of the 13th Annual Review of Progress in Applied Computational Electromagnetics, pp. 909914, Appl. Comput. Electromag. Soc., Monterey, Calif., 1997.
  • Collino, F., and P. Monk, The perfectly matched layer in curvilinear, coordinates, SIAM J. Sci. Comput., 19(13), 20612090, 1998.
  • Deschamps, G., Electromagnetics and differential forms, Proc. IEEE, 69(6), 676696, 1981.
  • Engheta, N., Compact cavity resonators using metamaterials with negative permittivity and permeability, in Proceedings of ICEAA 2001, pp. 739742, Turin, Italy, Univ. of Turino, Italy, 2001.
  • Fante, R. L., and M. T. McCormack, Reflection properties of the Salisbury screen, IEEE Trans. Antennas Propagat., 36(10), 14431454, 1988.
  • Garcia-Vidal, F. J., J. M. Pitarke, and J. B. Pendry, Effective medium theory of the optical properties of aligned carbon nanotubes, Phys. Rev. Lett., 78(22), 42894292, 1997.
  • Gedney, S. D., An anisotropic PML absorbing media for the FDTD simulation of fields in lossy and dispersive media, Electromagnetics, 16, 399415, 1996.
  • Hansen, R. C., and M. Burke, Antennas with magneto-dielectrics, Microwave Opt. Technol. Lett., 26(2), 7578, 2000.
  • Hashimoto, O., and O. Mizokami, A method for designing wave absorbers for cylindrical objects, IEEE Trans. Antennas Propagat., 39(6), 854857, 1991.
  • He, J. Q., and Q. H. Liu, A nonuniform cylindrical FDTD algorithm with improved PML and Quasi-PML absorbing boundary conditions, IEEE Trans. Geosci. Remote Sens., 37(2), 10661072, 1999.
  • Hwang, K.-P., and J.-M. Jin, Application of a hyperbolic grid generation technique to a conformal PML implementation, IEEE Microw. Guided Wave Lett., 9(4), 137139, 1999.
  • Jaggard, D. L., and N. Engheta, Chirosorb as an invisible medium, Electron. Lett., 25(3), 173174, 1989.
  • Jaggard, D. L., N. Engheta, and J. Liu, Chiroshield: A Salisbury/Dallenbach shield alternative, Electron. Lett., 26(17), 13321334, 1990.
  • Katz, D. S., E. T. Thiele, and A. Taflove, Validation and extension to three dimensions of the Berenger PML absorbing boundary condition, IEEE Microw. Guided Wave Lett., 4(8), 268270, 1994.
  • Kyriazidou, C. A., H. F. Contapagos, and N. G. Alexopoulos, Monolithic waveguide filters using printed photonic-bandgap materials, IEEE Trans. Microwave Theory Tech., 49(2), 297307, 2001.
  • Landau, L. D., and E. M. Lifshitz, Statistical Physics, Part 1, Butterworth-Heinmann, Woburn, Mass., 1980.
  • Landau, L. D., E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, Pergamon, New York, 1984.
  • Lindell, I. V., S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, BW media-media with negative parameters, capable of supporting backward waves, Microwave Opt. Technol. Lett., 31(2), 129133, 2001.
  • Liu, Q. H., and J. Q. He, Quasi-PML for waves in cylindrical coordinates, Microwave Opt. Technol. Lett., 19(2), 107111, 1998.
  • Maloney, J., M. Kesler, and G. Smith, Generalization of PML to cylindrical geometries, in Proceedings of the 13th Annual Rev. Prog. Appl. Comp. Eletromag., pp. 900908, Monterey, Calif., 1997.
  • Norgren, M., Optimal design using stratified bianisotropic media: Application to anti-reflection coatings, J. Electromagn. Waves Appl., 12, 939959, 1998.
  • Norgren, M., and S. He, On the possibility of reflectionless coating of homogeneous bianisotropic layer on a perfect conductor, Electromagnetics, 17, 295307, 1997.
  • Pendry, J. B., Negative refraction makes a perfect lens, Phys. Rev. Lett., 85(18), 39663969, 2000.
  • Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, Low frequency plasmons in thin-wire structures, J. Phys. Condens. Matter, 10, 47854809, 1998.
  • Rozanov, K. N., Ultimate thickness to bandwidth ratio of radar absorbers, IEEE Trans. Antennas Propagat., 48(8), 12301234, 2000.
  • Sacks, Z. S., D. M. Kingsland, R. Lee, and J.-F. Lee, A perfectly matched anisotropic absorber for use as an absorbing boundary condition, IEEE Trans. Antennas Propagat., 43(12), 14601463, 1995.
  • Sengupta, L., and M. S. Klushens, Multilayered Ferroelectric Composite Waveguides, Army Res. Lab. and Naval Res. Lab., U.S. Patent 5,830,591, Washington, D. C., 1998.
  • Shieh, B., K. C. Saraswat, J. P. McVittie, S. List, S. Nag, M. Islamraja, and R. H. Havemann, Air-gap formation during IMD deposition to lower interconnect capacitance, IEEE Trans. Electron Devices, 19(1), 1618, 1998.
  • Sievenpiper, D. F., M. E. Sickmiller, and E. Yablonovitch, 3D wire mesh photonic crystals, Phys. Rev. Lett., 76, 24802483, 1996.
  • Simovski, C. R., M. Kondratiev, and S. He, An explicit method for calculating the reflection from an anti-reflection structure involving array of c-shaped wire elements, J. Electromagn. Waves Appl., 14, 13351352, 2000.
  • Slepyan, G. Y., S. A. Maksimenko, A. Lakhtakia, O. M. Yevtsushenko, and A. V. Gusakov, Electronic and electromagnetic properties of nanotubes, Phys. Rev. B, 57, 94859497, 1998.
  • Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett., 84(18), 41844187, 2000.
  • Smith, D. R., D. C. Vier, N. Kroll, and S. Schultz, Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial, Appl. Phys. Lett., 78(4), 489491, 2001.
  • Teixeira, F. L., and W. C. Chew, PML-FDTD in cylindrical and spherical grids, IEEE Microw. Guided Wave Lett., 7(9), 285287, 1997.
  • Teixeira, F. L., and W. C. Chew, Analytical derivation of a conformal perfectly matched absorber for electromagnetic waves, Microwave Opt. Technol. Lett., 17, 231236, 1998.
  • Teixeira, F. L., and W. C. Chew, Differential forms, metrics, and the reflectionless absorption of electromagnetic waves, J. Electromagn. Waves Appl., 13, 665686, 1999a.
  • Teixeira, F. L., and W. C. Chew, Lattice electromagnetic theory for a topological viewpoint, J. Math. Phys., 40(1), 169187, 1999b.
  • Teixeira, F. L., and W. C. Chew, On causality and dynamic stability of perfectly matched layers for FDTD simulations, IEEE Trans. Microwave Theory Tech., 47(6), 775785, 1999c.
  • Teixeira, F. L., K. P. Hwang, W. C. Chew, and J. M. Jin, Conformal PML-FDTD for electromagnetic field simulations: A dynamic stability study, IEEE Trans. Antennas Propagat., 49(6), 902907, 2001.
  • Tretyakov, S. A., Uniaxial omega medium as a physically realizable alternative for the perfectly matched layer (PML), J. Electromagn. Waves Appl., 12, 821837, 1998.
  • Tretyakov, S. A., The perfectly matched layer as a synthetic material with active inclusions, Electromagnetics, 20, 155166, 2000.
  • Tretyakov, S. A., Meta-materials with wideband negative permittivity and permeability, Microwave Opt. Technol. Lett., 31(3), 163165, 2001.
  • Venugopal, V. C., A. Lakhtakia, R. Messier, and J.-P. Kucera, Low-permittivity nanocomposite materials using sculptured thin film technology, J. Vac. Sci. Technol. B, 18(1), 3236, 2000.
  • Veselago, V. G., Properties of materials having simultaneously negative values of the dielectric (ε) and the magnetic (μ) susceptibilities, Sov. Phys. Solid State, 8(12), 28542856, 1967.
  • Walser, R. W., W. Win, and P. M. Valanju, Shape-optimized ferromagnetic particles with maximum theoretical microwave susceptibility, IEEE Trans. Magn., 34(4), 13901392, 1998.
  • Yablonovitch, E., Photonic band-gap crystals, J. Phys. Condens. Matter, 5(16), 24432460, 1993.
  • Ziolkowski, R. W., The design of Maxwellian absorbers for numerical boundary conditions and for practical applications using artificial engineered materials, IEEE Trans. Antennas Propagat., 45, 656671, 1997a.
  • Ziolkowski, R. W., Time-derivative Lorentz materials and their utilization as electromagnetic absorbers, Phys. Rev. E, 55(6), 76967703, 1997b.
  • Ziolkowski, R. W., Negative permittivity and permeability meta-materials and their applications, in 2001 URSI North American Radio Science Meeting Digest, p. 382, Boston, Mass., 2001.
  • Ziolkowski, R. W., and F. Auzanneau, The analysis and design of Maxwellian smart skins, in 1997 URSI North American Radio Science Meeting Digest, p. 139, Montreal, Canada, 1997.