SEARCH

SEARCH BY CITATION

References

  • Cerutti-Maori, G., R. Petit, and M. Cadilhac, Etude Numérique du Champ Diffracté par un Réseau, C. R. Acad. Sci. Paris, 268, 10601063, 1969.
  • Hutley, M. C., J. P. Verrill, R. C. McPhedran, M. Nevière, and P. Vincent, Presentation and verification of a differential formulation for the diffraction by conducting gratings, Nouv. Rev. Opt., 6, 8795, 1975.
  • Li, L., Use of Fourier series in the analysis of discontinuous periodic structures, J. Opt. Soc. Am. A, 13, 18701876, 1996a.
  • Li, L., Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings, J. Opt. Soc. Am. A, 13, 10241035, 1996b.
  • Li, L., Reformulation of the Fourier modal method for surface-relief grating made with anisotropic materials, J. Mod. Opt., 45, 13131334, 1998.
  • Maystre, D., Integral method, in Electromagnetic Theory of Gratings, Top. Curr. Phys., vol. 22, edited by R. Petit, pp. 63100, Springer-Verlag, New York, 1980.
  • Montiel, F., M. Nevière, and P. Peyrot, Waveguide confinement of Cerenkov second-harmonic generation through a graded-index grating coupler: Electromagnetic optimization, J. Mod. Opt., 45, 21692186, 1998.
  • Nevière, M., Bragg–Fresnel multilayer gratings: Electromagnetic theory, J. Opt. Soc. Am. A, 11, 18351845, 1994.
  • Nevière, M., R. Petit, and M. Cadilhac, About the theory of optical grating coupler-waveguide systems, Opt. Commun., 8, 113117, 1973a.
  • Nevière, M., P. Vincent, R. Petit, and M. Cadilhac, Systematic study of resonances of holographic thin film couplers, Opt. Commun., 9, 4853, 1973b.
  • Nevière, M., P. Vincent, and R. Petit, Sur la Théorie du Réseau Conducteur et ses Applications à l'Optique, Nouv. Rev. Opt., 5, 6577, 1974.
  • Petit, R., Diffraction d'une onde Plane par un Réseau Métallique, Rev. Opt., 45, 353370, 1966.
  • Popov, E., and M. Nevière, Grating theory: New equations in Fourier space leading to fast converging results for TM polarization, J. Opt. Soc. Am. A, 17, 17731784, 2000.
  • Popov, E., and M. Nevière, Maxwell equation in Fourier space: Fast converging formulation for diffraction by arbitrary shaped, periodic, anisotropic media, J. Opt. Soc. Am. A, 18, 28862894, 2001.
  • Popov, E., M. Nevière, B. Gralak, and G. Tayeb, Staircase approximation validity for arbitrary shaped gratings, J. Opt. Soc. Am. A, 19, 3342, 2002.
  • Tayeb, G., Contribution à l'Étude de la Diffraction des ondes Électromagnétiques par des Réseaux. Réflexions sur les Méthodes Existantes et sur leur Extension aux Milieux Anisotropes, Ph.D. dissertation, 90/Aix 3/0065, Univ. of Aix Marseille III, Aix en Provence, France, 1990.
  • Tayeb, G., R. Petit, and M. Cadilhac, On the theoretical and numerical study of gratings coated with anisotropic layers, in Optics and the Information Age, Proc. SPIE, vol. 813, edited by H. Arsenault, pp. 407408, 1987.
  • Vincent, P., Differential method, in Electromagnetic Theory of Gratings, Top. Curr. Phys., vol. 22, edited by R. Petit, pp. 101121, Springer-Verlag, New York, 1980.
  • Watanabe, K., R. Petit, and M. Nevière, Differential theory of grating made of anisotropic materials, J. Opt. Soc. Am. A, 19, 325334, 2002.