SEARCH

SEARCH BY CITATION

References

  • Delfour, M., and J.-P. Zolésio, Shapes and Geometries: Analysis, Differential Calculus and Optimization, Adv. in Design and Control, SIAM, Philadelphia, 2001.
  • Dorn, O., E. L. Miller, and C. M. Rappaport, A shape reconstruction method for electromagnetic tomography using adjoint fields and level sets, Inverse Problems, 16, 11191156, 2000.
  • Feng, H., D. A. Castañon, and C. M. Rappaport, GPR approaches for buried plastic landmine detection, in Detection and Remediation Technologies for Mines ans Mine-like Targets, Proc. SPIE, vol. 4038, edited by A. C. Dubey, J. F. Harvey, J. T. Broach, and R. E. Dugan, pp. 14851496, SPIE, Orlando, 2000.
  • Feng, H., D. A. Castañon, and W. C. Karl, A curve evolution approach to object-based tomographic reconstruction, IEEE Trans. Image Process., in press, 2002.
  • Germain, P., and P. Muller, Introduction à la mécanique des milieux continus, Masson, Paris, 1980.
  • Harabetian, E., and S. Osher, Regularization of ill-posed problems via the level set approach, SIAM J. Appl. Math., 58, 16891706, 1998.
  • Higham, D. J., Trust region algorithm and timestep selection, SIAM J. Numer. Anal., 37, 194210, 1999.
  • Ito, K., K. Kunisch, and Z. Li, Level-set function approach to an inverse interface problem, Inverse Problems, 17, 12251242, 2001.
  • Lambert, M., TE scattering by a cylindrical dielectric obstacle buried in a half-space: A H-field-based method, J. Electromagn. Waves Appl., 12171239, 1998.
  • Litman, A., D. Lesselier, and F. Santosa, Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level set, Inverse Problems, 14, 658706, 1998.
  • Malladi, R., J. A. Sethian, and B. C. Vemuri, Shape modelling with front propagation: A level set approach, IEEE Trans. Pattern Anal. Mach. Intell., 17, 158175, 1995.
  • Mumford, D., and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Commun. Pure Appl. Math., 42, 577685, 1989.
  • Osher, S., and R. P. Fedkiw, Level set methods: An overview and some recent results, J. Comput. Phys., 169, 463502, 2001.
  • Osher, S., and J. A. Senthian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations, J. Comput. Phys., 79, 1249, 1988.
  • Ramananjaona, C., M. Lambert, and D. Lesselier, Shape inversion from TM and TE real data by controlled evolution of level sets, Inverse Problems, 17, 15851595, 2001a.
  • Ramananjaona, C., M. Lambert, D. Lesselier, and J.-P. Zolésio, Shape reconstruction of buried obstacles by controlled evolution of a level set: From a min-max formulation to numerical experimentation, Inverse Problems, 17, 10871111, 2001b.
  • Santosa, F., A level-set approach for inverse problems involving obstacles, ESAIM: Contr. Optim. Calc. Var., 1, 1733, 1996.
  • Sethian, J. A., Levelset Methods and Fast Marching Methods, Monogr. on Appl. and Comput. Math., 2nd ed., Cambridge Univ. Press, New York, 1999.
  • Sokolowski, J., and J.-P. Zolésio, Introduction to Shape Optimization. Shape Sensitivity Analysis, Springer Ser. Comput. Math., Springer-Verlag, NewYork, 1992.