SEARCH

SEARCH BY CITATION

References

  • Bunger, R., and F. Arndt, Efficient MPIE approach for the analysis of three-dimensional microstrip structures in layered media, IEEE Trans. Antennas Propag., 45, 11411153, 1997.
  • Burke, J. J., and R. W. Jackson, Reduction of parasitic coupling in packaged MMIC'S, IEEE MTT-S Int. Microwave Symp. Dig., 1, 255259, 1990.
  • Demuynck, F. J., G. A. E. Vandenbosch, and A. R. Van de Capelle, The expansion wave concept, Part I: Efficient calculation of spatial Green's functions in a stratified dielectric medium, IEEE Trans. Antennas Propag., 46, 397406, 1998.
  • Erteza, A., and B. K. Park, Nonuniqueness of resolution of Hertz vector in presence of a boundary, and the horizontal dipole problem, IEEE Trans. Antennas Propag., 17, 376378, 1969.
  • Faché, N., J. Van Hese, and D. De Zutter, Generalized space domain Green's dyadic for multilayered media with special applications to microwave interconnections, J. Electromagn. Waves Appl., 3, 651669, 1992.
  • Faraji-Dana, R., and Y. L. Chow, Accurate and efficient CAD tool for the design of optimum packaging for (M)MICs, IEE Proc. Antennas Microwaves Propag., Part H, 142, 8188, 1995.
  • Gay-Balmaz, P., and J. R. Mosig, Structures Rayonnantes 3-D planaires en milieu stratifié, J. Int. Nice Antennes, 1, 127130, 1996.
  • Horng, T.-S., W. E. McKinzie, and N. G. Alexopoulos, Full-wave spectral-domain analysis of compensation of microstrip discontinuities using triangular subdomain functions, IEEE Trans. Microwave Theory Tech., 40, 21372147, 1992.
  • Itoh, T., Spectral domain immittance approach for dispersion characteristics of generalized printed transmission lines, IEEE Trans. Microwave Theory Tech., 28, 733736, 1980.
  • Katehi, P. B., and N. G. Alexopoulos, Real axis integration of Sommerfeld integrals with applications to printed circuit antennas, J. Math. Phys., 24, 527533, 1983.
  • Michalski, K. A., and D. Zheng, Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, Part I: Theory, IEEE Trans. Antennas Propag., 38, 334335, 1990.
  • Mosig, J. R., Arbitrarily shaped microstrip structures and their analysis with a mixed potential integral equation, IEEE Trans. Microwave Theory Tech., 36, 314323, 1988.
  • Ney, M. M., Method of moments as applied to electromagnetic problems, IEEE Trans. Antennas Propag., 33, 972980, 1985.
  • Rao, S. M., D. R. Wilton, and A. W. Glisson, Electromagnetic scattering by surfaces of arbitrary shape, IEEE Trans. Antennas Propag., 30, 409418, 1982.
  • Rittweger, M., and I. Wolff, Analysis of complex passive (M)MIC-components using the finite difference time domain method, IEEE MTT-S Int. Microwave Symp. Dig., 1, 11471150, 1990.
  • Rumsey, V. H., Reaction concept in electromagnetic theory, Phys. Rev., 94, 14831491, 1954.
  • Sercu, J., N. Faché, F. Librecht, and D. De Zutter, Full-wave space-domain analysis of open microstrip discontinuities including the singular current-edge behavior, IEEE Microwave Theory Tech., 41, 15811588, 1993.
  • Taflove, A., Computational Electrodynamics: The Finite Difference Time Domain Method, Artech House, Norwell, Mass., 1997.
  • Tsai, M.-J., C. Chen, N. G. Alexopoulos, and T.-S. Horng, Multiple arbitrary shape via-hole and air-bridge transitions in multilayered structures, IEEE Trans. Microwave Theory Tech., 44, 25042511, 1996.
  • Volakis, J. L., A. Chatterjee, and L. C. Kempel, Finite elements for electromagnetics, in IEEE/OUP Series on Electromagnetic Wave Theory, Oxford Univ. Press, New York, 1997.
  • Zheng, D., and K. A. Michalski, Analysis of arbitrarily shaped coax-fed microstrip antennas—A hybrid mixed-potential integral equation approach, Microwave Opt. Technol. Lett., 3, 200203, 1990.