SEARCH

SEARCH BY CITATION

References

  • Allaire, G., Homogenization and two-scale convergence, SIAM J. Math. Anal., 23(6), 14821518, 1992.
  • Bossavit, A., On the homogenization of Maxwell equations, Int. J. Comput. Math. Electr. Electron. Eng., 14(4), 2326, 1995.
  • Cioranescu, D., and P. Donato, An Introduction to Homogenization, Oxford Univ. Press, New York, 1999.
  • Doyle, W. T., The Clausius-Mossotti problem for cubic array of spheres, J. Appl Phys., 49(2), 795797, 1978.
  • Holmbom, A., Homogenization of parabolic equations an alternative approach and some corrector-type results, Appl. Math., 42(5), 321343, 1997.
  • Kristensson, G., Homogenization of spherical inclusions, Tech. Rep. LUTEDX/(TEAT-7102)/1-22/(2002), Lund Inst. Technol., Dep. of Electrosci., Lund, Sweden, 2002. (Available at http://www.es.lth.se.).
  • Lam, J., Magnetic permeability of a simple cubic lattice of conducting magnetic spheres, J. Appl Phys., 60(12), 42304235, 1986.
  • McKenzie, D. R., R. C. McPhedran, and G. H. Derrick, The conductivity of lattices of spheres, II, The body centred and face centred cubic lattices, Proc. R. Soc. London, Ser. A, 362, 211232, 1978.
  • McPhedran, R. C., and D. R. McKenzie, The conductivity of lattices of spheres, I, The simple cubic lattice, Proc. R. Soc. London, Ser. A, 359, 4563, 1978.
  • Meredith, R. E., and C. W. Tobias, Resistance to potential flow through a cubical array of spheres, J. Appl Phys., 31(7), 12701273, 1960.
  • Nguetseng, G., A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20(3), 608623, 1989.
  • Rayleigh, L., On the influence of obstacles arranged in rectangular order upon the properties of the medium, Philos. Mag., 34, 481502, 1892.
  • Runge, I., Zur elektrischer Leitfähigkeit metallischer Aggregate, Z. Tech. Phys., 6(2), 6168, 1925.
  • Sanchez-Palencia, E., Non-homogeneous Media and Vibration Theory, Vol. 127, Lecture Notes in Physics, Springer-Verlag, New York, 1980.
  • Sihvola, A., Electromagnetic Mixing Formulae and Applications, Vol. 47, IEE Electromagn. Waves Ser., Inst. Electr. Eng., London, 1999.
  • Svanstedt, N., and N. Wellander, A note on two-scale limits of differential operators, Tech. Rep. 19, Dep. of Math., Chalmers Univ. of Technol., Göteborg, Sweden, 2001.
  • Wellander, N., Homogenization of some linear and nonlinear partial differential equations, Ph.D. thesis, Luleå Univ. of Technol., Luleå, Sweden, 1998.
  • Wellander, N., Homogenization of the Maxwell equations: Case I, Linear theory, Appl. Math., 46(2), 2951, 2001.
  • Wellander, N., Homogenization of the Maxwell equations: Case II, Nonlinear conductivity, Appl. Math., 47(3), 255283, 2002.
  • Wellander, N., and G. Kristensson, Homogenization of the Maxwell equations at fixed frequency, Tech. Rep. LUTEDX/(TEAT-7103)/1-37/(2002), Lund Inst. of Technol., Dep. of Electrosci., Lund, Sweden, 2002. (Available at http://www.es.lth.se.).