SEARCH

SEARCH BY CITATION

References

  • Bekefi, G., and S. C. Brown, Plasma physics: Waves and radiation processes in plasma, Am. J. Phys., 34, 1001, 1966.
  • Bloom, F., Mathematical Problems of Classical Nonlinear Electromagnetic Theory, Longman Sci. and Tech., Burnt Mill, Harlow, England, 1993.
  • Branch, G., and P. W. Smith, Fast-rise-time electromagnetic shock waves in nonlinear, ceramic dielectrics, J. Phys. D Appl. Phys., 29(8), 21702178, Aug. 1996.
  • Brooker, C., N. Altieri, G. Eastwood, R. Hoad, and J. E. Dolan, 90kV 1800A 85ps rise time electromagnetic shock line for UWB applications, Electron. Lett., 35(25), 22102212, Dec. 1999.
  • Coleman, B. D., and E. H. Dill, Thermodynamic restrictions on the constitutive equations of electromagnetic theory, Z. Angew. Math. Phys., 22, 691702, 1971.
  • Conley, C. C., and J. A. Smoller, On the structure of magnetohydrodynamic shock waves, Commun. Pure Appl. Math., 28, 367375, 1974.
  • Dafermos, C. M., Hyperbolic Conservation Laws in Continuum Physics, Grundlehren Math. Wiss., vol. 325, Springer-Verlag, New York, 2000.
  • Dolan, J. E., Simulation of shock waves in ferrite-loaded coaxial transmission lines with axial bias, J. Phys. D Appl. Phys., 32(15), 18261831, Aug. 1999.
  • Evans, L. C., Partial Differential Equations, Am. Math. Soc., Providence, R. I., 1998.
  • Farjami, Y., and M. Hesaaraki, Structure of shock waves in planar motion of plasma, Nonlinearity, 11, 797821, 1998.
  • Gel'fand, I., Some problems in the theory of quasilinear equations, Am. Math. Soc. Transl., 29, 295381, Translated from Russian, Usp. Mat. Nauk 14:87–115, 1959, 1963.
  • Germain, P., Shock waves and shock waves structure in magneto-fluid dynamics, Rev. Mod. Phys., 32, 951958, 1960.
  • Glimm, J., Solutions in the large for nonlinear hyperbolic systems of equations, Commun. Pure Appl. Math., 18, 697715, 1965.
  • Godlewski, E., and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Springer-Verlag, New York, 1996.
  • Godunov, S. K., A difference scheme for numerical computation of discontinuous solutions of equations of fluid dynamics, Mat. Sb., 47(89), 217306, 1959.
  • Goldstein, H., Classical Mechanics, second edition, Addison-Wesley-Longman, Reading, Mass., 1980.
  • Grabbe, C. L., Plasma waves and instabilities, Am. J. Phys., 52, 970, 1984.
  • Gustafsson, M., Wave splitting in direct and inverse scattering problems, Ph.D. thesis, Lund Inst. of Technol., Dept. of Electromagn. Theory, P.O. Box 118, SE-211 00 Lund, Sweden, 2000. (Available as http://www.es.lth.se/home/mats).
  • Gvozdovskaya, N. I., and A. G. Kulikovskii, Investigation of electromagnetic shock-wave structure in anisotropic ferromagnets with easy axis, Wave Motion, 29, 2334, 1999.
  • Hörmander, L., Lectures on Nonlinear Hyperbolic Differential Equations, number 26 in Mathémathiques & Applications, Springer-Verlag, New York, 1997.
  • Jackson, J. D., Classical Electrodynamics, third edition, John Wiley, New York, 1999.
  • Kevorkian, J., and J. D. Cole, Multiple Scale and Singular Perturbation Methods, Springer-Verlag, New York, 1996.
  • Kong, J. A., Electromagnetic Wave Theory, John Wiley, New York, 1986.
  • Kristensson, G., Condon's model on optical rotatory power and causality: a scientific trifle, Tech. Rep. LUTEDX/(TEAT-7080)/1-23/(1999), Lund Inst. of Technol., Dept. of Electromagn. Theory, P.O. Box 118, SE-211 00 Lund, Sweden, 1999.
  • Landau, L. D., E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, second edition, Pergamon, New York, 1984.
  • Lindell, I. V., A. H. Sihvola, and K. Suchy, Six-vector formalism in electromagnetics of bi-anisotropic media, J. Electromagn. Waves Appl., 9(7/8), 887903, 1995.
  • Maugin, G. A., On shock waves and phase-transition fronts in continua, ARI, 50, 141150, 1998.
  • Maugin, G. A., On the universality of the thermomechanics of forces driving singular sets, Arch. Appl. Mech., 70, 3145, 2000.
  • Poincaré, H., Méthodes nouvelles de la mécanique céleste (New Methods of Celestial Mechanics, English Translation), Am. Inst. of Phys., Woodbury, N. Y., 1993, Originally published by Gauthier-Villars, Paris, 1892–1899.
  • Serre, D., Systems of conservation laws: A challenge for the XXIst century, in Mathematics Unlimited: 2001 and Beyond, edited by B. Engquist, and W. Schmid, pp. 10611080. Springer-Verlag, New York, 2001.
  • Sjöberg, D., Simple wave solutions for the Maxwell equations in bianisotropic, nonlinear media, with application to oblique incidence, Wave Motion, 32(3), 217232, 2000.
  • Sjöberg, D., Entropy conditions for electromagnetic fields in nonlinear media, International Conference on Electromagnetics in Advanced Applications, pp. 711714, Politecnico di Torino, Torino, Italy, September 10–14, 2001.
  • Smoller, J., Shock Waves and Reaction-Diffusion Equations, Grundlehren Math. Wiss., vol. 258, second edition, Springer-Verlag, New York, 1994.
  • Taylor, M., Partial Differential Equations III: Nonlinear Equations, Springer-Verlag, New York, 1996.