SEARCH

SEARCH BY CITATION

References

  • Bérenger, J. P., A perfect matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114, 185200, 1994.
  • Bergmann, T., J. O. A. Robertsson, and K. Holliger, Finite-difference modeling of electromagnetic wave propagation in dispersive and attenuating media, Geophysics, 63, 856867, 1998.
  • Bitri, A., and G. Grandjean, Frequency-wavenumber modeling and migration of 2D GPR data in moderately heterogeneous dispersive media, Geophysics, 46, 287301, 1998.
  • Bourgeois, J. M., and G. S. Smith, A fully three-dimensional simulation of a ground-penetrating radar FDTD theory compared with experiment, IEEE Trans. Geosci. Remote Sens., 34, 3644, 1996.
  • Cai, J., and G. A. McMechan, Ray-based synthesis of bistatic ground-penetrating radar profiles, Geophysics, 60, 8796, 1995.
  • Carcione, J. M., Ground-penetrating radar, wave theory and numerical simulation in lossy anisotropic media, Geophysics, 61, 16641677, 1996.
  • Carcione, J. M., G. Lenzi, and S. Valle, GPR modelling by the Fourier method: Improvement of the algorithm, Geophys. Prospect., 47, 10151029, 1999.
  • Chen, H. W., and T. M. Huang, Finite-difference time-domain simulation of GPR data, J. Appl. Geophys., 40, 139163, 1998.
  • Conyers, L. B., and D. Goodman, Ground Penetrating Radar: An Introduction for Archaeologists, AltaMira, London, 1997.
  • Gandhi, O. P., B. Q. Gao, and J. Y. Chen, A frequency dependent finite difference time domain formulation for general dispersive media, IEEE Trans. Microwave Theory Tech., 41, 792797, 1993.
  • Gedney, S. D., An anisotropic PML absorbing media for the FDTD simulation of fields in lossy and dispersive media, Electromagnetic, 16, 399415, 1996.
  • Grandjean, G., et al., Evaluation of GPR techniques for civil-engineering applications: Study on a test site, J. Appl. Geophys., 45, 141156, 2000.
  • Gürel, L., and O. Ugur, Three-dimensional FDTD modeling of a ground-penetrating radar, IEEE Trans. Geosci. Remote Sens., 38, 15131521, 2000.
  • He, P., Measurement of acoustic dispersion using both transmitted and reflected pulse, J. Acoust. Soc. Am., 107, 801807, 2000.
  • Hollender, F., and S. Tillard, Modeling ground-penetrating radar wave propagation and reflection with the Jonsher parameterization, Geophysics, 62, 19331942, 1998.
  • Katz, D. S., E. T. Thiele, and A. Taflove, Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FD-TD meshes, IEEE Microwave Guided Wave Lett., 4, 268270, 1994.
  • Kelley, D. F., and R. J. Luebbers, Piecewise linear recursive convolution for dispersive media using FDTD, IEEE Trans. Antennas Propag., 44, 792797, 1996.
  • Kunz, K. S., and R. J. Luebbers, The Finite Difference Time Domain for Electromagnetic, CRC Press, Boca Raton, Fla., 1993.
  • Luebbers, R. J., and F. Hunsberger, FDTD for N-th order dispersive media, IEEE Trans. Antennas Propag., 40, 12971301, 1992.
  • Luebbers, R. J., F. Hunsberger, K. S. Katz, R. B. Standler, and M. Schneider, A frequency-dependent finite-difference time-domain formulation for dispersive materials, IEEE Trans. Electromagn. Compat., 32, 222227, 1990.
  • Lysne, P. C., A model for the high-frequency electrical response of wet rocks, Geophysics, 48, 775786, 1983.
  • Mari, J. L., F. Glangeaud, and F. Coppens, Traitement du signal pour géologues et géophysiciens, editions technip, 460 pp., Inst. Fr. du Petrole, Rueil-Malmaison, France, 1997.
  • Mei, K. K., and J. Fang, Superabsorption—A method to improve absorbing boundary conditions, IEEE Trans. Antennas Propag., 40, 10011010, 1992.
  • Montoya, T. P., and G. S. Smith, Land mine detection using a ground penetrating radar based on resistively loaded Vee dipoles, IEEE Trans. Antennas Propag., 47, 17951806, 1999.
  • Mur, G., Absorbing boundary conditions for wave-like equations, IEEE Trans. Electromagn. Compat., 23, 377382, 1981.
  • Powers, M. H., and G. R. Olhoeft, Modeling dispersive ground penetrating radar data, paper presented at 5th International Conference on Ground Penetrating Radar, Kitchener, Ont., Canada, 12–16 June 1994.
  • Qing Huo, L., and F. Guo-Xin, Simulations of GPR in dispersive media using a frequency dependant PSTD algorithm, IEEE Trans. Geosci. Remote Sens., 37, 23172324, 1999.
  • Roberts, R. L., and J. J. Daniels, Modeling near-field GPR in three dimensions using the FDTD method, Geophysics, 62, 11141126, 1997.
  • Sacks, Z. S., D. M. Kingsland, R. Lee, and J. F. Le, A perfectly matched anisotropic absorber for use as an absorbing boundary condition, IEEE Trans. Antennas Propag., 43, 14601463, 1995.
  • Sullivan, D. M., Frequency-dependent FDTD metods using Z transforms, IEEE Trans. Antennas Propag., 40, 12231230, 1992.
  • Sullivan, D. M., A simplified PML for use with the FDTD method, IEEE Microwave Guided Wave Lett., l6, 9799, 1996.
  • Sullivan, D. M., An unsplit step 3D PML for use with the FDTD method, IEEE Microwave Guided Wave Lett., 7, 184186, 1997.
  • Tabbagh, A., The response of a three dimensionnal magnetic and conductive body in shallow depth electromagnetic prospecting, Geophys. J. R. Astron. Soc., 81, 215230, 1995.
  • Taflove, A., Computational Electromagnetic: The Finite Difference Time Domain Method, Artech House, Norwood, Mass., 1995.
  • Teixeira, F. L., W. C. Chew, M. Straka, M. L. Oristaglio, and T. Wang, Finite difference time domain simulation of ground penetrating radar on dispersive, inhomogeneous and conductive soils, IEEE Trans. Geosci. Remote Sens., 36, 19281937, 1998.
  • Vitebsky, S., L. Carin, M. A. Ressler, and F. H. Le, Ultra-wideband, short-pulse ground penetrating radar: Simulation and measurement, IEEE Trans. Geosci. Remote Sens., 35, 762772, 1997.
  • Wang, T., and A. C. Tripp, FDTD simulation of EM wave propagation in 3-D media, Geophysics, 61, 10971106, 1996.
  • Xu, T., and G. A. McMechan, GPR attenuation and its numerical simulation in 2.5D dimensions, Geophysics, 62, 403414, 1997.
  • Yee, K. S., Numerical solution of initial boundary value problems involving Maxwell's equation in isotropic media, IEEE Trans. Antennas Propag., 14, 302307, 1966.